Hydrological modelling of tropical watersheds under low data availability

Authors

DOI:

https://doi.org/10.33448/rsd-v9i5.3262

Keywords:

VIC model; Streamflow; Rainfall.

Abstract

Hydrologic simulation is an important tool for the planning and management of water resources. However, the lack of input data, particularly soil and climate data, frequently complicates the application of hydrological models in Brazilian Atlantic Rainforest basins. The purpose of this study was to analyse the application of the VIC model, under the condition of low data availability, to predict the daily streamflow of two basins (Jucu and Santa Maria da Vitória). The results showed satisfactory statistical indexes only for the Santa Maria da Vitória basin. Due to data limitations and the simplified forms used to estimate these missing data, the model proved promising for understanding the hydrologic regime of these basins.

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. de M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

Andréassian, V. (2004). Waters and forests: From historical controversy to scientific debate. Journal of Hydrology, 291(1–2), 1–27.

Beckers, J., Smerdon, B., & Wilson, M. (2009). Review of hydrologic models for forest management and climate change applications in British Columbia and Alberta (1st ed.). Kamloops: FORREX.

Bergher, I. S., Nappo, M. E., Silva, A. G. da, Santos, A. R. dos, Simon, J. E., & Faria, A. P. G. de. (2015). GIS Tools use to Identify Routes for Ecological Corridors formation between Atlantic Forest (Mata Atlântica) Fragments in the south region of Espírito Santo, Brazil. Australian Journal of Basic and Applied Sciences, 9(20), 273–281.

Beskow, S., Norton, L. D., & Mello, C. R. de. (2013). Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model. Water Resources Management, 27(2), 341–363.

Bleby, T. M., Colquhoun, I. J., & Adams, M. A. (2012). Hydraulic traits and water use of Eucalyptus on restored versus natural sites in a seasonally dry forest in southwestern Australia. Forest Ecology and Management, 274, 58–66.

Bressiani, D. de A., Gassman, P. W., Fernandes, J. G., Garbossa, L. H. P., Srinivasan, R., Bonumá, N. B., & Mendiondo, E. M. (2015). A review of Soil and Water Assessment Tool (SWAT) applications in Brazil: challenges and prospects. International Journal of Agricultural and Biological Engineering, 8(3), 9-35.

Castro, F. da S., Pezzopane, J. E. M., Cecílio, R. A., Pezzopane, J. R. M., & Xavier, A. C. (2010). Avaliação do desempenho dos diferentes métodos de interpoladores para parâmetros do balanço hídrico climatológico. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(8), 871–880.

Cuartas, L. A., Tomasella, J., Nobre, A. D., Nobre, C. A., Hodnett, M. G., Waterloo, M. J., Oliveira, S. M. de, et al. (2012). Distributed hydrological modeling of a micro-scale rainforest watershed in Amazonia: Model evaluation and advances in calibration using the new HAND terrain model. Journal of Hydrology, 462–463(10), 15–27.

Eugênio, F. C., Santos, A. R. dos, Dalfi, R. L., & Moreira, T. R. (2013). Influência do Desmatamento na Disponibilidade Hídrica da Bacia Hidrográfica de Rive, Alegre, ES, Brasil. Silva Lusitana, 21(2), 205–218. Unidade de Silvicultura e Produtos Florestais.

Farley, K. A., Jobbágy, E. G., & Jackson, R. B. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11(10), 1565–1576.

Ferraz, S. F. de B., Lima, W. de P., & Rodrigues, C. B. (2013). Managing forest plantation landscapes for water conservation. Forest Ecology and Management, 301, 58–66.

Fischer, G. R., Costa, M. H., Murta, F. Z., Malhado, A. C. M., Aguiar, L. J. G., & Ladle, R. J. (2013). Multi-site land surface model optimization: An exploration of objective functions. Agricultural and Forest Meteorology, 182–183, 168–176.

Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T. J., Su, F., Sheffield, J., et al. (2010). Water Budget Record from Variable Infiltration Capacity (VIC) Model. Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records.

GEOBASES. (2012). Sistema integrado de bases geoespaciais do Estado do Espírito Santo. Sistema integrado de bases geoespaciais do Estado do Espírito Santo. Retrieved July 7, 2012, from http://www.geobases.es.gov.br/

Groenendijk, M., Dolman, A. J., van der Molen, M. K., Leuning, R., Arneth, A., Delpierre, N., Gash, J. H. C., et al. (2011). Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. Agricultural and Forest Meteorology, 151(1), 22–38.

Jaw, T., Li, J., Hsu, K., Sorooshian, S., & Driouech, F. (2015). Evaluation for Moroccan dynamically downscaled precipitation from GCM CHAM5 and its regional hydrologic response. Journal of Hydrology: Regional Studies, 3, 359–378.

Jobbágy, E. G., Baldi, G., & Nosetto, M. D. (2012). Tree Plantation in South America and The Water Cycle: Impacts and Emergent Opportunities. Forests in Development: A Vital Balance (pp. 53–63).

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface and energy fluxes for general circulation models. Journal of Geophysical Research, 99(7), 14415–14428.

Van Liew, M. W., Veith, T. L., Bosch, D. D., & Arnold, J. G. (2007). Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watersheds. Journal of Hydrologic Engineering, 12(2), 173–189.

Locatelli, B., & Vignola, R. (2009). Managing watershed services of tropical forests and plantations: Can meta-analyses help? Forest Ecology and Management, 258(9), 1864–1870.

Lohmann, D., Nolte-Holube, R., & Raschke, E. (1996). A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A, 48(5), 708–721.

Marques, M., Costa, M. F. da, Mayorga, M. I. de O., & Pinheiro, P. R. C. (2004). Water Environments: Anthropogenic Pressures and Ecosystem Changes in the Atlantic Drainage Basins of Brazil. AMBIO: A Journal of the Human Environment, 33(1), 68–77.

Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 98–99, 257–277.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1st ed.). Santa Maria: UFSM, NTE.

Pereira, D. dos R., Almeida, A. Q. de, Martinez, M. A., & Rosa, D. R. Q. (2014). Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast. Revista Brasileira de Ciência do Solo, 38(4), 1350–1358.

Pinto, D. B. F., Silva, A. M. da, Beskow, S., Mello, C. R. de, & Coelho, G. (2013). Application of the Soil and Water Assessment Tool (SWAT) for sediment transport simulation at headwater watershed in Minas Gerais state, Brazil. Transactions of the ASABE, 56(2), 697–709.

Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., & Shirmohammadi, A. (1993). Infiltration and soil water movement. In D. R. Maidment (Ed.), Handbook of Hydrology (pp. 5.1-5.51). New York: McGraw-Hill.

Ribeiro, C. A. D., Pezzopane, J. R. M., Pezzopane, J. E. M., Loos, R. A., Xavier, A. C., Cecílio, R. A., & Neves, M. A. (2011). Delimitação de microrregiões agroclimáticas e suas relações com o potencial produtivo da cultura do eucalipto. FLORESTA, 41(4).

Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6), 1141–1153.

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., et al. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394.

Salemi, L. F., Groppo, J. D., Trevisan, R., Moraes, J. M. de, Ferraz, S. F. de B., Villani, J. P., Duarte-Neto, P. J., et al. (2013). Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology, 499, 100–109.

Salemi, L. F., Groppo, J. D., Trevisan, R., Moraes, J. M. de, Lima, W. de P., & Martinelli, L. A. (2012). Riparian vegetation and water yield: A synthesis. Journal of Hydrology, 454–455, 195–202.

Scarano, F. R. (2002). Structure, Function and Floristic Relationships of Plant Communities in Stressful Habitats Marginal to the Brazilian Atlantic Rainforest. Annals of Botany, 90(4), 517–524.

Tang, C., & Dennis, R. L. (2014). How reliable is the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model? Global and Planetary Change, 116, 1–9.

Tesemma, Z. K., Wei, Y., Peel, M. C., & Western, A. W. (2015). The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff. Advances in Water Resources, 83, 310–322.

Victoria, D. de C. (2010). Simulação hidrológica de bacias amazônicas utilizando o modelo de Capacidade de Infiltração Variável (VIC). Universidade de São Paulo.

Wallner, M., Haberlandt, U., & Dietrich, J. (2013). A one-step similarity approach for the regionalization of hydrological model parameters based on Self-Organizing Maps. Journal of Hydrology, 494, 59–71.

Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C., Schwalm, C., Wohlfahrt, G., et al. (2012). Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resources Research, 48(6), 1–13.

Xie, Z., Yuan, F., Duan, Q., Zheng, J., Liang, M., & Chen, F. (2007). Regional Parameter Estimation of the VIC Land Surface Model: Methodology and Application to River Basins in China. Journal of Hydrometeorology, 8(3), 447–468.

Zhang, N., Li, Y. P., Huang, W. W., & Liu, J. (2014). An Inexact Two-Stage Water Quality Management Model for Supporting Sustainable Development in a Rural System. Journal of Environmental Informatics, 24(1), 52–64.

Zhu, C., & Lettenmaier, D. P. (2007). Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925-2004. Journal of Climate, 20(9), 1936–1946.

Downloads

Published

30/03/2020

How to Cite

CECÍLIO, R. A.; CAMPANHARO, W. A.; ZANETTI, S. S.; LEHR, A. T.; LOPES, A. C. Hydrological modelling of tropical watersheds under low data availability. Research, Society and Development, [S. l.], v. 9, n. 5, p. e100953262, 2020. DOI: 10.33448/rsd-v9i5.3262. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3262. Acesso em: 17 apr. 2024.

Issue

Section

Agrarian and Biological Sciences