Tolerance of maize lines to the tembotrione herbicide
DOI:
https://doi.org/10.33448/rsd-v11i10.32647Keywords:
Zea mays; Weeds; Phytotoxicity; Photosynthesis; Productivity.Abstract
Maize inbred lines, due to their high level of homozygosity, have different behaviors from commercial hybrids in relation to herbicide sensitivity. Tembotrione, a post-emergence herbicide, widely used in the production of commercial corn hybrids, has been reported as causing phytotoxic effects. In this context, the objective of this work was to evaluate the phytotoxic potential of tembotrione, applied to six maize lines, assessing its effects over morphological and production aspects, with emphasis on photosynthesis. For this, an experiment was implemented in the municipality of Goianésia, in the brazilian Cerrado, during the dry season, using conventional sprinkler irrigation. The experimental design was randomized blocks, arranged in split plots with two factors: six maize inbred lines by four doses of tembotrione (0; 120; 240; and 480 mL ha-1). It was verified that there were no visual symptoms of toxicity in the genotype 43NG34381L with the application of 480 mL ha-1, even though it corresponded to twice that recommended in the label, being the inbred line more tolerant to the herbicide. The genotypes Z9999L, G55081L and 551CB, although sensitive to tembotrione at the label dose (240 mL ha-1), had moderate phytotoxicity at 7 days after application (DAA), without any symptoms at 14 and 21 DAA. The genotypes ZKQMR2357L and PGAG10051L were the most sensitive to the application of the herbicide tembotrione and maintained persistent symptoms of toxicity over time, even with the application of 240 mL ha-1. The yield of the ZKQMR2357L line was negatively affected by the toxicity caused by the herbicide.
References
Abit, J. M. et al. (2009) Differential response of grain sorghum hybrids to foliar-applied mesotrione. Weed Technol., 23 (1), 28-33.
Barrett, M. (2000) The role of cytochrome P450 enzymes in herbicide metabolism. In: Cobb, A. H. & Kirkwood, R. C. (eds.) Herbicides and Their Mechanisms of Action. Boca Raton, FL: CRC, 25-37.
Bollman, J. D. et al. (2008) Efficacy and tolerance to HPPD-inhibiting herbicides in sweet corn. Weed Technology, 22 (4), 666-674.
Choe, E., Williams, M. M., Boydston, R. A., Huber, J. L., Huber, S. C. & Pataky, J. K. (2014). Photosystem II‐inhibitors play a limited role in sweet corn response to 4‐hydroxyphenyl pyruvate dioxygenase‐inhibiting herbicides. Agronomy Journal, 106 (4), 1317-1323.
Christoffoleti, P.J. & Ovejero, R.F. (2008) Resistência das plantas daninhas a herbicidas: definições, bases e situação no Brasil e no mundo. In: Christoffoleti, P.J. Aspectos de resistência de plantas daninhas a herbicidas. Piracicaba: Associação Brasileira de Ação à Resistência de Plantas Daninhas, 9-34.
Collini, E. (2019). Carotenoids in photosynthesis: The revenge of the “Accessory” pigments. Chem, 5(3), 494-495.
Companhia Nacional de Abastecimento (CONAB, Brasil). (2020) Acompanhamento da Safra brasileira de Grãos: safra 2019/2020: décimo segundo levantamento. Brasília, DF: Conab. https://www.conab.gov.br/infoagro/safras/graos/ boletim-da-safra-de-graos.
David, F. A., Galon, L., Perin, G. F., Forte, C. T., Concenço, G., Mossi, A. J. E., ... & Moisinho, I. S. (2017). Selectivity of herbicides to erva mate (Ilex paraguariensis) plants. African Journal of Agricultural Research, 12 (48), 3389-3398.
FAO. 2019. World Food and Agriculture – Statistical pocketbook 2019. Rome. http://www.fao.org/3/ca6463en/ca6463en.pdf
Frans, R., Talbert, R., Marx, D., Crowley, H. (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. In: Camper, N. D. (Ed.). Southern Weed Science Society. Research methods in weed science, 3rd, WSSA, Champaign, 29-45.
Freitas, I. L. J. et al. (2013) Ganho genético avaliado com índices de seleção e com REML/Blup em milho-pipoca. Pesquisa Agropecuária Brasileira, 48 (11), 1464-1471.
Grossmann, K. (2003) Mediation of herbicide effects by hormone interactions. Journal of Plant Growth Regulation, 22(1), 109-122.
Han, H., Yu, Q., Beffa, R., González, S., Maiwald, F., Wang, J. & Powles, S. B. (2021) Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. The Plant Journal, 105 (1), 79-92.
Hassannejad, S., Lotfi, R., Ghafarbi, S. P., Oukarroum, A., Abbasi, A., Kalaji, H. M. & Rastogi, A. (2020) Early Identification of Herbicide Modes of Action by the Use of Chlorophyll Fluorescence Measurements. Plants, 9 (4), 529.
Kakade, S. U., Deshmukh, J. P., Thakare, S. S. & Solanke, M. S. (2020) Efficacy of pre-and post-emergence herbicides in maize. Indian Journal of Weed Science, 52(2), 143-146.
Karam, D., Silva, J. A. A., Pereira filho, I. A. & Magalhães, P. C. (2009) Características do herbicida tembotrione na cultura do milho. Sete Lagoas: Embrapa Milho e Sorgo, Circular Técnica 129.
Lushchak, V. I., & Semchuk, N. M. (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiologiae Plantarum, 34(5), 1607-1628.
Mançanares, L. B., Netto, A. G, Fátima Andrade, J., Presoto, J. C. Silva, L. J. F. & Carvalho, S. J. P. (2019) Seletividade de tembotrione aplicada em diferentes estádios fenológicos da cultura do milho safrinha. Revista Agrogeoambiental, 10 (4), doi:10.18406/2316-1817v10n420181167.
Munné-Bosch, S., Weiler E. W., Alegre, L., Muller, M., Duchting, P. & Falk, J. (2007) α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta, 225, 681–691
Oliveira, E. J., Melo, H. C., Alves, F. R. R., Melo, A. P. C., Trindade, K. L., Guedes, T. C., Sousa, C. M. (2020) Morphophysiology and yield of green corn cultivated under different water depths and nitrogen doses in the cerrado conditions of Goiás, Brazil. Research, Society and Development, 9(10), e6179108857, 10.33448/rsd-v9i10.8857.
Rani, N., Duhan, A. , & Tomar, D. (2020). Ultimate fate of herbicide tembotrione and its metabolite TCMBA in soil. Ecotoxicology and Environmental Safety, 203, 111023.
RNC. Registro Nacional de Cultivares – RNC (2022) http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php
Salmon, Y., Lintunen, A., Dayet, A., Chan, T., Dewar, R., Vesala, T. & Hölttä, T. (2020). Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New phytologist, 226 (3), 690-703.
Schuelter, A. R., Da Silva, M. F., De Souza, I. R. P., Marcolin, J. & Schuster, I. (2018). Genetic tolerance of maize lines to tembotrione and nicosulfuron. Revista Brasileira de Milho e Sorgo, 17(2), 317-327.
Şerban, M., Măturaru, G., Lazăr, C., Grădilă, M. & Ciontu, C. (2021). Research on the selectivity and the efficacy of herbicides in controlling weeds for the maize crop. Romanian Agricultural Research, 38, 371-379
Singh, G. M., Xu, J., Schaefer, D., Day, R., Wang, Z. & Zhang, F. (2022). Maize diversity for fall armyworm resistance in a warming world. Crop Science, 62(1), 1-19.
Smith, M. R., Rao, I. M. & Merchant, A. (2018) Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in Plant Science, 9, 1889.
Song, X., Zhou, G., He, Q. & Zhou, H. (2020). Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress. Agricultural Water Management, 241, 106330.
Stephenson, D. O., Bond, J. A., Landry, R. L. & Edwards, H. M. (2015). Weed management in corn with postemergence applications of tembotrione or thiencarbazone: tembotrione. Weed Technology, 29(3), 350-358.
Van Almsick, A. (2009). New HPPD-inhibitors–a proven mode of action as a new hope to solve current weed problems. Outlooks on Pest Management, 20(1), 27-30.
Van Almsick, A. et al. (2009) Tembotrione – a new exceptionally safe crossspectrum herbicide for corn production. Bayer Cropscience Journal, 62(1), 5-16.
Walsh, M. J. et al. (2012) Efeitos sinérgicos da atrazina e mesotriona em populações suscetíveis e resistentes de rabanete (Raphanus raphanistrum) e o potencial de superação da resistência aos herbicidas triazina. Weed Technology, 26(2), 341-347.
Williams, M. M. & Pataky, J. K. (2008). Genetic basis of sensitivity in sweet corn to tembotrione. Weed Science, 56(3), 364-370.
Williams, M. M. & Pataky, J. K. (2010) Factors affecting differential sensitivity of sweet corn to HPPD-inhibiting herbicides. Weed science, 58(3), 289-294.
Zimmermann, F. J. P. (2014) Estatística aplicada à pesquisa agrícola. (2a ed.), Editora Embrapa. 582 pp.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eliel Matheus Sousa; Hyrandir Cabral de Melo; Frederico Rocha Rodrigues Alves; Aniela Pilar Campos de Melo; Dalva Graciano Ribeiro; Cleiton Mateus Sousa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.