Effect on viability and cellular proliferation of rhBMP-2 immobilized on TEMPO modified cellulose hydrogel
DOI:
https://doi.org/10.33448/rsd-v11i11.33260Keywords:
rhBMP2; TEMPO modified cellulose nanofibrils; Immobilization; Grafting; Cell proliferation.Abstract
BMP´s are signaling proteins that belong to the Transforming Growth Factor-β (TGF-β) superfamily. These proteins promote the recruitment and differentiation of mesenchymal progenitor cells into bone forming cells, the osteoblasts and increase the rate of bone formation. The carrier systems to release rhBMP-2 to the action site are based on the use of free and soluble BMP incorporated into biopolymers such as collagen, gelatin, chitosan, hyaluronic acid and silk. The fused rhBMP-2-thioredoxin could be an interesting approach for new advances in the field of carrying systems of these growth factors. The fused protein thioredoxin can be useful as a coupling agent of BMP-2 to the carrier system, binding it to the surface of the matrix and it is one of the main aims of this work. The recombinant protein rhBMP-2 was produced by IPTG induction obtaining a soluble protein without the need for refolding process. The immobilization of rhBMP-2 at the surface of the TEMPO modified cellulose nanofibrils was indicated by FTIR spectroscopy. The cellular viability tests indicated increased proliferative behavior of both, C2C12 and stem cells from rats, when seeded in presence of rhBMP2 when compared to the free rhBMP2 substrate. The calcified extracellular matrix confirmed the increased activity of the rhBMP2-cellulose substrate, indicating the success of the proposed method. The cell proliferation assays indicated the method used to immobilize rhBMP2 onto the surface of the TEMPO modified cellulose was successful. The cells growth increased when compared to the reference sample free of rhBMP2.
References
Agrawal, V., & Sinha, M. (2017). A review on carrier systems for bone morphogenetic protein-2. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(4), 904–925. https://doi.org/10.1002/jbm.b.33599
Algar, W. R. (2017). A Brief Introduction to Traditional Bioconjugate Chemistry. Em Chemoselective and Bioorthogonal Ligation Reactions (p. 1–36). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527683451.ch1
Dimitriou, R., & Giannoudis, P. V. (2005). Discovery and development of BMPs. Injury, 36(3), S28–S33. https://doi.org/10.1016/j.injury.2005.07.031
Gautschi, O. P., Frey, S. P., & Zellweger, R. (2007). Bone Morphogenetic Proteins in Clinical Applications. ANZ Journal of Surgery, 77(8), 626–631. https://doi.org/10.1111/j.1445-2197.2007.04175.x
Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A., Volloch, V., & Kaplan, D. (2004). Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research Part A, 71A(3), 528–537. https://doi.org/10.1002/jbm.a.30186
Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A., & Suda, T. (1994). Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. Journal of Cell Biology, 127(6), 1755–1766. https://doi.org/10.1083/jcb.127.6.1755
Khojasteh, A., Behnia, H., Naghdi, N., Esmaeelinejad, M., Alikhassy, Z., & Stevens, M. (2013). Effects of different growth factors and carriers on bone regeneration: A systematic review. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 116(6), e405–e423. https://doi.org/10.1016/j.oooo.2012.01.044
Kim, Y., Ho, S. O., Gassman, N. R., Korlann, Y., Landorf, E. V., Collart, F. R., & Weiss, S. (2008). Efficient Site-Specific Labeling of Proteins via Cysteines. Bioconjugate Chemistry, 19(3), 786–791. https://doi.org/10.1021/bc7002499
Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor Protocols, 2018(6). https://doi.org/10.1101/pdb.prot095505
LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., & McCoy, J. M. (1993). A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology (Nature Publishing Company), 11(2), 187–193. https://doi.org/10.1038/nbt0293-187
Long, S., Truong, L., Bennett, K., Phillips, A., Wong-Staal, F., & Ma, H. (2006). Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expression and Purification, 46(2), 374–378. https://doi.org/10.1016/j.pep.2005.09.025
Nandi, S. K., Roy, S., Mukherjee, P., Kundu, B., De, D. K., & Basu, D. (2010). Orthopaedic applications of bone graft & graft substitutes: A review. The Indian Journal of Medical Research, 132, 15–30.
Okamoto, M., Murai, J., Yoshikawa, H., & Tsumaki, N. (2006). Bone Morphogenetic Proteins in Bone Stimulate Osteoclasts and Osteoblasts During Bone Development. Journal of Bone and Mineral Research, 21(7), 1022–1033. https://doi.org/10.1359/jbmr.060411
Retnoningrum, D. S., Pramesti, H. T., Santika, P. Y., Valerius, O., Asjarie, S., & Suciati, T. (2012). Codon optimization for high level expression of human bone morphogenetic protein – 2 in Escherichia coli. Protein Expression and Purification, 84(2), 188–194. https://doi.org/10.1016/j.pep.2012.05.010
Ruhé, P. Q., Boerman, O. C., Russel, F. G. M., Mikos, A. G., Spauwen, P. H. M., & Jansen, J. A. (2006). In vivo release of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin. Journal of Materials Science: Materials in Medicine, 17(10), 919. https://doi.org/10.1007/s10856-006-0181-z
Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, 8(8), 2485–2491. https://doi.org/10.1021/bm0703970
Sharapova, N. E., Kotnova, A. P., Galushkina, Z. M., Lavrova, N. V., Poletaeva, N. N., Tukhvatulin, A. E., Tukhvatullin, A. E., Semikhin, A. S., Gromov, A. V., Soboleva, L. A., Ershova, A. S., Zaĭtsev, V. V., Sergienko, O. V., Lunin, V. G., & Kariagina, A. S. (2010). [Production of the recombinant human bone morphogenetic protein-2 in Escherichia coli and testing of its biological activity in vitro and in vivo]. Molekuliarnaia Biologiia, 44(6), 1036–1044.
Termaat, M. F., Den Boer, F. C., Bakker, F. C., Patka, P., & Haarman, H. J. T. M. (2005). Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. The Journal of Bone and Joint Surgery. American Volume, 87(6), 1367–1378. https://doi.org/10.2106/JBJS.D.02585
Trovatti, E., Cunha, A. G., Carvalho, A. J. F., & Gandini, A. (2017). Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose. International Journal of Biological Macromolecules, 95, 762–768. https://doi.org/10.1016/j.ijbiomac.2016.11.102
Trovatti, E., Tang, H., Hajian, A., Meng, Q., Gandini, A., Berglund, L. A., & Zhou, Q. (2018). Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydrate Polymers, 181, 256–263. https://doi.org/10.1016/j.carbpol.2017.10.073
Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R. C., Kang, R., Mok, J., Lee, M. J., Luu, H. L., & Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes & Diseases, 1(1), 87–105. https://doi.org/10.1016/j.gendis.2014.07.005
Xiao, Y.-T., Xiang, L.-X., & Shao, J.-Z. (2007). Bone morphogenetic protein. Biochemical and Biophysical Research Communications, 362(3), 550–553. https://doi.org/10.1016/j.bbrc.2007.08.045
Yu, N. Y. C., Schindeler, A., Peacock, L., Mikulec, K., Baldock, P. A., Ruys, A. J., & Little, D. G. (2010). In vivo local co-delivery of recombinant human bone morphogenetic protein-7 and pamidronate via poly-D, L-lactic acid. European Cells & Materials, 20, 431–441; discussion 441-442. https://doi.org/10.22203/ecm.v020a35
Zhang, Y., Ma, Y., Yang, M., Min, S., Yao, J., & Zhu, L. (2011). Expression, purification, and refolding of a recombinant human bone morphogenetic protein 2 in vitro. Protein Expression and Purification, 75(2), 155–160. https://doi.org/10.1016/j.pep.2010.07.014)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ana Lucia Colange; Carlos Sabino de Oliveira; Benedito Domingos Neto; Heloisa Sobreiro Selistre de Araújo; Eliane Trovatti; Monica Rosas da Costa Iemma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.