Emerging micropollutants of pharmaceutical origin in surface waters in BRICS: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33454

Keywords:

Drugs; Emerging countries; Water pollution.

Abstract

Studies on the occurrence, effect, fate, and removal of drugs from the environment are still scarce in emerging countries. The objective of this study was to evaluate the panorama of studies on the presence of emerging micropollutants of pharmaceutical origin in the surface waters of the countries that make up the BRICS (Brazil, Russia, India, China, and South Africa). Databases and collections in peer-reviewed journals were used, and the queries were refined by evaluating the results of each group individually. In BRICS, knowledge about the levels of contamination and the negative impacts on the aquatic environment by drugs proved to be limited, despite existing studies showing the contamination of surface waters by these pollutants. Thus, these countries need to intensify research and, above all, improve the efficiency of sewage treatment systems. More financial investments are also required in science, as the scarcity of studies in these countries is also related to the high costs of chemical analysis.

Author Biographies

Josyanne Inês Teixeira Ramos Naves, Universidade Federal de Rondonópolis

Possui graduação em Engenharia Agrícola e Ambiental pela Universidade Federal de Mato Grosso - UFMT (2017), mestrado em Gestão e Tecnologia Ambiental pela Universidade Federal de Rondonópolis - UFR (2021). Atuou como auxiliar de perícia ambiental no diagnóstico da qualidade ambiental nas bacias dos rios Vermelho e São Lourenço pelo Laboratório de Tecnologia e Gestão Ambiental, UFR (2019-2020).

Domingos Sávio Barbosa, Universidade Federal de Rondonópolis

Possui graduação em Ciências Biológicas pela UFMS (2000), mestrado em Ciências da Engenharia Ambiental pela Universidade de São Paulo (2003). Doutorado em Ciências da Engenharia Ambiental pela Universidade de São Paulo (2008) com estágio no exterior na Universidade de Coimbra (Portugal). Tem experiência na área de Ecologia, com ênfase em Ecologia Aquática, atuando principalmente em estudos de Avaliação de Risco Ecológico integrado (solos e águas) e recuperação ambiental. Pesquisador CNPq SET 3A na empresa Aplysia Tecnologia Ambiental - implantação do Laboratório de Ecotoxicologia Terrestre (2009-2010). Representante da UFMT no Comitê de Bacia Hidrográfica do Rio São Lourenço (2014-2015). Membro do Conselho municipal do Meio Ambiente de Rondonópolis (2015-2016). Representante das I.E.S. no Fórum de Combate ao Uso de Agrotóxicos (2016 - atual). Supervisor do Laboratório de Tecnologia e Gestão Ambiental UFMT LTGA (2013 atual). Coordenador do Laboratório de Poluição Ambiental do NUPEC-FINEP (2016 - atual). Coordenador do Curso de Graduação em Engenharia Agrícola e Ambiental (2018 a 2019). Coordenador do Programa de Pós-Graduação em Gestão e Tecnologia Ambiental da UFMT (2019 - 2020). Gerente de Transferência Tecnológica da Universidade Federal de Rondonópolis (2021-presente).

Cristina Alves Lacerda, Universidade Federal de Rondonópolis

Possui graduação em Química pela Universidade Federal do Mato Grosso e doutorado em Química pela Universidade de São Paulo. Atualmente é professora Associada da Universidade Federal do Maranhão. É pesquisadora do Laboratório de Pesquisa em Química Analítica (LPQA), vinculado ao Núcleo de Petróleo e Energia (NEPE). É coordenadora da qualidade do Laboratório de Análises e Pesquisa em Química Analítica de Petróleo e Biocombustíveis (LAPQAP). Possui experiência em gestão da Qualidade para Laboratórios de Combustíveis e Biocombustíveis, de acordo com a norma NBR ISO/IEC 17025. Tem experiência na área de Química, atuando principalmente nos seguintes temas: cromatografia líquida e gasosa, SPME, espectrometria de massas, controle de qualidade de combustíveis e biocombustíveis.

References

Aus Der Beek, T., Weber, F. A., Bergmann, A, Hickmann, S., Ebert, I., Hein, A. & Küster, A. (2016). Pharmaceuticals in the environment - global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823-835. https://doi.org/10.1002/etc.3339.

Alencar, T. O. S., Machado, C. S. R., Costa, S. C. C. & Alencar, B. R. (2014). Descarte de medicamentos: uma análise da prática no Programa Saúde da Família. Ciência & Saúde Coletiva, 19(7), 2157-2166. https://doi.org/10.1590/1413-81232014197.09142013.

Almeida, P. R. (2009). O papel dos BRICS na economia mundial. In: Cebri-Icone-Embaixada Britânica Brasília. Comércio e Negociações Internacionais para Jornalistas, 57-65. Rio de Janeiro: Cebri.

Amin, M. M., Bina, B., Ebrahim, K., Yavari, Z. & Mohammadi, F. (2018). Biodegradation of natural and synthetic estrogens in moving bed bioreactor. Chinese Journal of Chemical Engineering, 26(2), 393-399. https://doi.org/10.1016/j.cjche.2017.06.006.

Bain, P. A., Gregg, A., Pandey, A. K., Mudiam, M. K. R., Neale, P. A. & K. A. (2021). Using bioanalytical tools to detect and track organic micropollutants in the Ganga River near two major cities. Journal of Hazardous Materials, 404(Parte A), 124135. https://doi.org/10.1016/j.jhazmat.2020.124135.

Baronti, C., Curini, R., D'Ascenzo, G., Di Corcia, A., Gentili, A. & Samperi, R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science & Technology, 34(24), 5059-5066. https://doi.org/10.1021/es001359q.

Bila, M. D. & Dezotti, M. (2007). Desreguladores endócrinos no meio ambiente: efeitos e consequências. Química Nova, 30(3), 651-666. https://doi.org/10.1590/S0100-40422007000300027.

Buarque, P. M. C. (2017). Avaliação da remoção de micropoluentes emergentes e nitrogênio em sistemas anaeróbios e microaeróbios seguidos de filtros biológicos percoladores sujeitos à aeração natural e forçada. Tese. Universidade Federal do Ceará, Fortaleza. Retirado de https://repositorio.ufc.br/ri/handle/riufc/29776.

Chen, Z. -F., Wen, H. -B., Dai, X., Yan, S. -C., Zhang, H., Chen, Y. -Y., Du, Z., Liu, G. & Cai, Z. (2018). Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China. Journal of Hazardous Materials, 357, 376-383. https://doi.org/10.1016/j.jhazmat.2018.06.020.

Firmino, P. I. M., Farias, R. S., Barros, A. N., Landim, P. G. C., Holanda, G. B. M., Rodríguez, E., Lopes, A. C. & Santos, A. B. (2018). Applicability of Microaerobic Technology to Enhance BTEX Removal from Contaminated Waters. Applied Biochemistry and Biotechnology, 184, 1187-1199. https://doi.org/10.1007/s12010-017-2618-x.

Fundação Fio Cruz. (2015). Rumo à era pós-antibiótico. Retirado em 14 de março, 2021, de https://portal.fiocruz.br/noticia/rumo-era-pos-antibiotico.

Heeb, F., Singer, H., Pernet-Coudrier, B., Qi, W. X., Liu, H. J., Longrée, P., Müller, B. & Berg, M. (2012). Organic micropollutants in rivers downstream of the megacity Beijing: sources and mass fluxes in a large-scale wastewater irrigation system. Environmental Science & Technology, 46(16), 8680-8688. https://doi.org/10.1021/es301912q.

Ivshina, I., Tyumina, E. & Vikhareva, E. (2018). Biodegradation of emerging pollutants: focus on pharmaceuticals. Microbiology Autralia, 39(3), 117-122. https://doi.org/10.1071/MA18037.

Lakatos, E. M., & Marconi, M. A. (2010). Fundamentos de metodologia científica. São Paulo: Atlas.

Lehutso, R. F., Daso, A. P. & Okonkwo, J. O. (2017). Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa. Emerging Contaminants, 3(3), 107-114. https://doi.org/10.1016/j.emcon.2017.07.001.

Lew, B., Tarre, S., Beliavski, M., Dosoretz, C. & Green, M. (2009). Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination, 243(1-3), 251–257. https://doi.org/10.1016/j.desal.2008.04.027.

Lima, D. R. S., Tonucci, M. C, Libânio, M. & Aquino, S. F. (2017). Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção. Engenharia Sanitária e Ambiental, 22(6), 1043-1054. https://doi.org/10.1590/S1413-41522017165207.

Liu, Y., Tong, Z., Shi, J., Jia, Y., Yang, K. & Wang, Z. (2020). Correlation between Exogenous Compounds and the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes. Microrganismos, 8(8), 1211. https://doi.org/10.3390/microorganisms8081211.

Loureiro, S. A., Noletto, A. P. R., Santos, L. S., Santos-Júnior, J. B. S. & Lima-Júnior, O. F. (2016). O uso do método de revisão sistemática da literatura na pesquisa em logística, transportes e cadeia de suprimentos. Transportes, 24 (1), 95. https://doi.org/10.14295/transportes.v24i1.919.

Kabir, E. R., Rahman, M. S. & Rahman, I. (2015). A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology, 40(1), 241-258. https://doi.org/10.1016/j.etap.2015.06.009.

Kodera, T., Akizuki, S. & Toda, T. (2017). Formation of simultaneous denitrification and methanogenesis granules in biological wastewater treatment. Process Biochemistry, 58, 252-257. https://doi.org/10.1016/j.procbio.2017.04.038.

Kookana, R. S., Williams, M., Boxall, A. B. A., Larsson, D. G. J., Gaw, S., Choi, K., Yamamoto, H., Thatikonda, S. & Zhu, Y. G. (2014). Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philosophical Transactions of the Royal Society B, 369, 20130586. https://doi.org/10.1098/rstb.2013.0586.

Kokkinos, P., Mantzavinos, D. & Venieri, D. (2016). Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water. Molecules, 25(9). https://doi.org/10.3390/molecules25092016.

Komolafe, O., Mrozik, W., Dolfing, J., Acharya, K., Vassale, L., Mota, C. R. & Davenport, R. (2021). Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil. Journal of Environmental Management, 287, 112286. https://doi.org/10.1016/j.jenvman.2021.112286.

Kumar, M., Ram, H., Honda, R., Poopipattana, C., Canh, V. D., Chaminda, T. & Furumai, H. (2019). Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: Urban vulnerability and resilience perspective. Science of The Total Environment, 693, 133640, https://doi.org/10.1016/j.scitotenv.2019.133640.

Madikizela L. M. & Chimuka, L. (2017). Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa, Environmental Monitoring and Assessment, 189 (348). https://doi.org/10.1007/s10661-017-6069-1.

Menezes, A. H. N., Duarte, F. R., Carvalho, L. O. R. & Souza, T. E. S. (2019). Metodologia científica: teoria e aplicação na educação a distância. Petrolina: Fundação Universidade Federal do Vale do São Francisco.

Nascimento, J. G. S., Araújo, M. H. P., Silva, M. E. R., Santos, A. B. & Firmino, P. I. M. (2019). Remoção microaeróbia de micropoluentes emergentes: Efeito da vazão de microaeração. ABES. Retirado em 12 de janeiro, 2022, de https://repositorio.ufc.br/handle/riufc/54918.

Niemeyer, J. C., Silva, E. M. & Sousa, J. P. (2007). Desenvolvimento de um Esquema para Avaliação de Risco Ecológico em Ambientes Tropicais: Estudo de Caso da Contaminação por Metais em Santo Amaro da Purificação, Bahia, Brasil. Journal of the Brazilian Society of Ecotoxicology, 2(3), 263-267. Retirado de https://www.researchgate.net/profile/Eduardo-Da-Silva-16/publication/276214210_Desenvolvimento_de_um_Esquema_para_Avaliacao_de_Risco_Ecologico_em_Ambientes_Tropicais_Estudo_de_Caso_da_Contaminacao_por_Metais_em_Santo_Amaro_da_Purificacao_Bahia_Brasil/links/5559caa608ae980ca610912e/Desenvolvimento-de-um-Esquema-para-Avaliacao-de-Risco-Ecologico-em-Ambientes-Tropicais-Estudo-de-Caso-da-Contaminacao-por-Metais-em-Santo-Amaro-da-Purificacao-Bahia-Brasil.pdf.

Nguyen, D. & Khanal, S. K. (2018). A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnology Advances, 36(7), 1971-1983. https://doi.org/10.1016/j.biotechadv.2018.08.007.

Qi, W., Singer, H., Berg, M., Müller, B., Pernet-Coudrier, B., Liu, H. & Qu, J. (2015). Elimination of polar micropollutants and anthropogenic markers by wastewater treatment in Beijing, China. Chemosphere, 119, 1054-1061. https://doi.org/10.1016/j.chemosphere.2014.09.027.

Pessoa, G. P., Souza, N. C., Vidal, C. B., Alves, J. A., Firmino, P. I., Nascimento, R. F. & Santos, A. B. (2014). Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science of The Total Environment, 490, 288-295. https://doi.org/10.1016/j.scitotenv.2014.05.008.

Prodanov, C. C. & Freitas, E. C. (2013). Metodologia do trabalho científico-recurso eletrônico: métodos e técnicas da pesquisa e do trabalho acadêmico. Novo Hamburgo: Feevale.

Rodrigues, J. S., Cordeiro J., Calazans, G. M., Cordeiro, J. L. & Guimarães, J. C. S. Presença de fármacos e hormônios na água: uma análise cienciométrica. Research, Society and Development, 7(6), 01-22. https://doi.org/10.17648/rsd-v7i6.240.

Runnalls, T. J., Margiotta-Casaluci, L., Kugathas, S. & Sumpter, J. P. (2010). Pharmaceuticals in the Aquatic Environment: Steroids and Anti-Steroids as High Priorities for Research. Human and Ecological Risk Assessment, 16(6), 1318-1338. https://doi.org/10.1080/10807039.2010.526503.

Sanderson, H., Brain, R. A., Johnson, D. J., Wilson, C. J. & Solomon, K. R. (2004). Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology, 203(1-3), 27-40. https://doi.org/10.1016/j.tox.2004.05.015.

Schneegans, S., Lewis, J. & Straza, T. (2021). Relatório de Ciências da UNESCO: A corrida contra o tempo por um desenvolvimento mais inteligente – Resumo executivo. Paris: UNESCO.

Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G. J. & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research, 21, 921-931. https://doi.org/10.1007/s11356-013-1957-6.

Shulan, L., Bingshu, H., Jun. W., Juan. L. & Xianmin, H. (2020). Risks of caffeine residues in the environment: Necessity for a targeted ecopharmacovigilance program. Chemosphere, 243, 125343. https://doi.org/10.1016/j.chemosphere.2019.125343.

Sibeko, P. A., Naicker, D., Mdluli, P. S. & Madikizela, L. M. (2019). Naproxen, ibuprofen, and diclofenac residues in river water, sediments and Eichhornia crassipes of Mbokodweni river in South Africa: An initial screening. Journal Environmental Forensics, 20(2), 129-138 https://doi.org/10.1080/15275922.2019.1597780.

Silva, N. C. (2018). Efeitos Associados à Micropoluentes de Preocupação Emergente em Corpo Hídrico de um Município de Médio Porte. Dissertação. Universidade Federal de Viçosa, Minas Gerais - Brasil. Retirado de https://repositorio.ufc.br/ri/bitstream/riufc/2148/1/2011_tese_ncsouza.pdf.

Soni, G., & Kodali, R. (2011). A Critical Analysis of Supply Chain Management Content in Empirical Research. Business Process Management Journal, 17(2), 238-66. https://doi.org/10.1108/14637151111122338.

Souza, N. C. (2011). Avaliação de micropoluentes emergentes em esgotos e águas superficiais. Tese. Universidade Federal do Ceará, Fortaleza, Brasil. Retirado de https://repositorio.ufc.br/handle/riufc/2148.

Tang, J. Y. M., McCarty, S., Glenn, E., Neale, P. A., Warne, M. St. J. & Escher, B. I. (2013). Misture effects of organic micropollutants present in water: Towards the development of effect-based water quality trigger values for baseline toxicity. Water Research, 47(10), 3300–3314. https://doi.org/10.1016/j.watres.2013.03.011.

Tiehm, A., Hollert, H., Yin, D., Zheng, B. (2020). Tai Hu (China): Water quality and processes - From the source to the tap. Science of the Total Environment, 712, 135559. https://doi.org/10.1016/j.scitotenv.2019.135559.

Timofeeva, S., Panasenkova, Y., Badienkova, G. & Shupletsova, I. (2020). Environmental risks of using antibiotics in the Baikal region of Russia. E3S Web of Conferences, 217, 09009. https://doi.org/10.1051/e3sconf/202021709009.

Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E. & Tsang, Y.F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Science of The Total Environment. 596-597, 303-320. https://doi.org/10.1016/j.scitotenv.2017.04.102.

Zhang, K., Yuan, G., Werdich, A. A. & Zhao, Y. (2020). Ibuprofen and diclofenac impair the cardiovascular development of zebrafish (Danio rerio) at low concentrations. Environmental Pollution, 258, 113613. https://doi.org/10.1016/j.envpol.2019.113613.

Published

21/08/2022

How to Cite

NAVES, J. I. T. R.; BARBOSA, D. S.; LACERDA, C. A. . Emerging micropollutants of pharmaceutical origin in surface waters in BRICS: a review. Research, Society and Development, [S. l.], v. 11, n. 11, p. e244111133454, 2022. DOI: 10.33448/rsd-v11i11.33454. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/33454. Acesso em: 6 oct. 2022.

Issue

Section

Agrarian and Biological Sciences