Effects of an acute swimming session until exhaustion in myocytes isolated from Wistar rats
DOI:
https://doi.org/10.33448/rsd-v11i11.33561Keywords:
Acute exercise; Myocardium; Swimming.Abstract
The role of regular physical exercise is recognized for the prevention, control and treatment of cardiovascular diseases. However, studies show that after strenuous aerobic exercise sessions in healthy individuals can lead to cardiac damage, due to the high degree of stress imposed on myocardial structures. This study verifies the effects of swimming to exhaustion on contraction and relaxation velocities, as well as the velocity of calcium release and reuptake in cardiomyocytes isolated from the left ventricle. Wistar animals aged 16 weeks were submitted to a protocol of swimming until exhaustion with a load of 5% of body weight and later the cardiomyocytes were isolated. It was observed that an acute session of swimming until exhaustion promoted an increase in the velocity of contraction and relaxation and an increase in the velocity of calcium release. Exercise to exhaustion promotes adverse effects on the myocardium, however more studies are needed to explain these effects and demonstrate the molecular mechanisms involved in the process.
References
Aronsen, J. M., Louch, W. E., & Sjaastad, I. (2016). Cardiomyocyte Ca 2+ dynamics: clinical perspectives. Scandinavian Cardiovascular Journal, 50(2), 65–77. https://doi.org/10.3109/14017431.2015.1136079
Bers, D. M. (2014). Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annual Review of Physiology, 76, 107–127. https://doi.org/10.1146/ANNUREV-PHYSIOL-020911-153308
Caniffi, C., Prentki Santos, E., Cerniello, F. M., Tomat, A. L., González Maglio, D., Toblli, J. E., & Arranz, C. (2020). Cardiac morphological and functional changes induced by C-type natriuretic peptide are different in normotensive and spontaneously hypertensive rats. Journal of Hypertension, 38(11), 2305–2317. https://doi.org/10.1097/HJH.0000000000002570
Carneiro-Júnior, M. A., Quintão-Júnior, J. F., Drummond, L. R., Lavorato, V. N., Drummond, F. R., da Cunha, D. N. Q., Amadeu, M. A., Felix, L. B., de Oliveira, E. M., Cruz, J. S., Prímola-Gomes, T. N., Mill, J. G., & Natali, A. J. (2013). The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. Journal of Molecular and Cellular Cardiology, 57(1), 119–128. https://doi.org/10.1016/j.yjmcc.2013.01.013
Casimiro-Lopes, G., Alves, S., Salerno, V., Passos, M., Lisboa, P., & Moura, E. (2008). Maximum Acute Exercise Tolerance in Hyperthyroid and Hypothyroid Rats Subjected to Forced Swimming. Hormone and Metabolic Research, 40(4), 276–280. https://doi.org/10.1055/s-2008-1046799
Casimiro-Lopes, G., Lisboa, P. C., Koury, J. C., Boaventura, G., Passos, M. C. F., & Moura, E. G. (2012). Maternal prolactin inhibition during lactation affects physical performance evaluated by acute exhaustive swimming exercise in adult rat offspring. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, 44(2), 123–129. https://doi.org/10.1055/S-0031-1299711
Contrepois, K., Wu, S., Moneghetti, K. J., Hornburg, D., Ahadi, S., Tsai, M.-S., Metwally, A. A., Wei, E., Lee-McMullen, B., Quijada, J. v., Chen, S., Christle, J. W., Ellenberger, M., Balliu, B., Taylor, S., Durrant, M. G., Knowles, D. A., Choudhry, H., Ashland, M., … Snyder, M. P. (2020). Molecular Choreography of Acute Exercise. Cell, 181(5), 1112-1130.e16. https://doi.org/10.1016/j.cell.2020.04.043
Eisner, D. A., Caldwell, J. L., Kistamás, K., & Trafford, A. W. (2017). Calcium and Excitation-Contraction Coupling in the Heart. Circulation Research, 121(2), 181–195. https://doi.org/10.1161/CIRCRESAHA.117.310230
Eisner, D., Bode, E., Venetucci, L., & Trafford, A. (2013). Calcium flux balance in the heart. Journal of Molecular and Cellular Cardiology, 58(1), 110–117. https://doi.org/10.1016/J.YJMCC.2012.11.017
Elliott, A. D., & la Gerche, A. (2015). The right ventricle following prolonged endurance exercise: are we overlooking the more important side of the heart? A meta-analysis. British Journal of Sports Medicine, 49(11), 724–729. https://doi.org/10.1136/BJSPORTS-2014-093895
Lee, C. (1993). The definition and assessment of physical activity in cardiovascular risk reduction research. Australian Journal of Public Health, 17(3), 190–194. https://doi.org/10.1111/J.1753-6405.1993.TB00134.X
Ljones, K., Ness, H. O., Solvang-Garten, K., Gaustad, S. E., & Andre Høydal, M. (2017). Acute exhaustive aerobic exercise training impair cardiomyocyte function and calcium handling in Sprague-Dawley rats. PLOS ONE, 12(3), e0173449. https://doi.org/10.1371/journal.pone.0173449
Locatelli, J., Paiva, N. C. N., Carvalho, S. H. R., Lavorato, V. N., Gomes, L. H. L. S., Castro, Q. J. T., Grabe-Guimarães, A., Carneiro, C. M., Natali, A. J., & Isoldi, M. C. (2017). Swim training attenuates the adverse remodeling of LV structural and mechanical properties in the early compensated phase of hypertension. Life Sciences, 187, 42–49. https://doi.org/10.1016/j.lfs.2017.08.014
McArdle, W. D. K. F. I.; K. V. L. (2013). McArdle,W.D.; Katch, F.I.; Katch, V.L. Fisiologia do exercício: energia, nutrição e desempenho humano. (Guanabara Kogan, Ed.; 6th ed.).
Middleton, N., George, K., Whyte, G., Gaze, D., Collinson, P., & Shave, R. (2008). Cardiac troponin T release is stimulated by endurance exercise in healthy humans. Journal of the American College of Cardiology, 52(22), 1813–1814. https://doi.org/10.1016/J.JACC.2008.03.069
Muthusamy, V. R., Kannan, S., Sadhaasivam, K., Gounder, S. S., Davidson, C. J., Boeheme, C., Hoidal, J. R., Wang, L., & Rajasekaran, N. S. (2012). Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radical Biology and Medicine, 52(2), 366–376. https://doi.org/10.1016/J.FREERADBIOMED.2011.10.440
Natali, A. J., Fowler, E. D., Calaghan, S. C., & White, E. (2015). Voluntary exercise delays heart failure onset in rats with pulmonary artery hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 309(3), H421–H424. https://doi.org/10.1152/AJPHEART.00262.2015/SUPPL_FILE/PODCAST.MP3
Natali, A. J., Wilson, L. A., Peckham, M., Turner, D. L., Harrison, S. M., & White, E. (2002). Different regional effects of voluntary exercise on the mechanical and electrical properties of rat ventricular myocytes. The Journal of Physiology, 541(Pt 3), 863. https://doi.org/10.1113/JPHYSIOL.2001.013415
Okely, A. D., Kontsevaya, A., Ng, J., & Abdeta, C. (2021). 2020 WHO guidelines on physical activity and sedentary behavior. In Sports Medicine and Health Science. https://doi.org/10.1016/j.smhs.2021.05.001
Oláh, A., Németh, B. T., Mátyás, C., Horváth, E. M., Hidi, L., Birtalan, E., Kellermayer, D., Ruppert, M., Merkely, G., Szabó, G., Merkely, B., & Radovits, T. (2015). Cardiac effects of acute exhaustive exercise in a rat model. International Journal of Cardiology, 182(C), 258–266. https://doi.org/10.1016/j.ijcard.2014.12.045
Perk, J., de Backer, G., Gohlke, H., Graham, I., Reiner, Ž., Verschuren, M., Albus, C., Benlian, P., Boysen, G., Cifkova, R., Deaton, C., Ebrahim, S., Fisher, M., Germano, G., Hobbs, R., Hoes, A., Karadeniz, S., Mezzani, A., Prescott, E., … Wolpert, C. (2012). European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). European Heart Journal, 33(13), 1635–1701. https://doi.org/10.1093/EURHEARTJ/EHS092
Radák, Z., Ogonovszky, H., Dubecz, J., Pavlik, G., Sasvari, M., Pucsok, J., Berkes, I., Csont, T., & Ferdinandy, P. (2003). Super-marathon race increases serum and urinary nitrotyrosine and carbonyl levels. European Journal of Clinical Investigation, 33(8), 726–730. https://doi.org/10.1046/J.1365-2362.2003.01202.X
Rodrigues, J. A., Prímola-Gomes, T. N., Soares, L. L., Leal, T. F., Nóbrega, C., Pedrosa, D. L., Rezende, L. M. T., Oliveira, E. M. de, & Natali, A. J. (2018). Physical Exercise and Regulation of Intracellular Calcium in Cardiomyocytes of Hypertensive Rats TT - Exercício Físico e Regulação de Cálcio Intracelular em Cardiomiócitos de Ratos Hipertensos. Arquivos Brasileiros de Cardiologia, 111(2), 172–179. https://doi.org/10.5935/abc.20180113
Scharhag, J., George, K., Shave, R., Urhausen, A., & Kindermann, W. (2008). Exercise-associated increases in cardiac biomarkers. Medicine and Science in Sports and Exercise, 40(8), 1408–1415. https://doi.org/10.1249/MSS.0B013E318172CF22
Shave, R., Baggish, A., George, K., Wood, M., Scharhag, J., Whyte, G., Gaze, D., & Thompson, P. D. (2010). Exercise-Induced Cardiac Troponin Elevation: Evidence, Mechanisms, and Implications. Journal of the American College of Cardiology, 56(3), 169–176. https://doi.org/10.1016/J.JACC.2010.03.037
Shave, R., George, K. P., Atkinson, G., Hart, E., Middleton, N., Whyte, G., Gaze, D., & Collinson, P. O. (2007). Exercise-induced cardiac troponin T release: a meta-analysis. Medicine and Science in Sports and Exercise, 39(12), 2099–2106. https://doi.org/10.1249/MSS.0B013E318153FF78
Silverthorn, D. U. (2017). Fisiologia Humana: Uma Abordagem Integrada (Artmed, Ed.; 7th ed.).
Thompson, P. D., Buchner, D., Piña, I. L., Balady, G. J., Williams, M. A., Marcus, B. H., Berra, K., Blair, S. N., Costa, F., Franklin, B., Fletcher, G. F., Gordon, N. F., Pate, R. R., Rodriguez, B. L., Yancey, A. K., & Wenger, N. K. (2003). Exercise and Physical Activity in the Prevention and Treatment of Atherosclerotic Cardiovascular Disease. Circulation, 107(24), 3109–3116. https://doi.org/10.1161/01.CIR.0000075572.40158.77
Tsutsui, H., Kinugawa, S., & Matsushima, S. (2011). Oxidative stress and heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 301(6), 2181–2190. https://doi.org/10.1152/AJPHEART.00554.2011/ASSET/IMAGES/LARGE/ZH40121101550006.JPEG
Vollaard, N. B. J., Shearman, J. P., & Cooper, C. E. (2005). Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Medicine (Auckland, N.Z.), 35(12), 1045–1062. https://doi.org/10.2165/00007256-200535120-00004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maria Cecília Teles; Lucas Rogério dos Reis Caldas; Luciana Fernandes Barros; Bianca Iara Campos Coelho; Franciany de Jesus Silva; Mauro Cesar Isoldi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.