Biodiversity and ecosystem functions of coprophagous beetles in different land uses in the microregion of Ituiutaba (MG)
DOI:
https://doi.org/10.33448/rsd-v11i11.33830Keywords:
Beetles; Nutrient cycling; Forest; Agriculture; Pasture.Abstract
The objective of the present study was to survey the biodiversity of scarab beetles in the Córrego do Café region in Ituiutaba (MG), as well as their ecosystem functions. The study was carried out in the portions of riparian forests of the Café stream located at the Experimental Farm of the University of the State of Minas Gerais (UEMG), Ituiutaba Unit (MG). The collections of scarab beetle species (Coleoptera: Scarabaeidae) took place between March and June 2018. To identify the scarab beetle, traps were installed in the areas of native vegetation, agriculture and pasture, of the ptifall type, buried at the level of the soil, spaced 50 m apart and baited with swine feces (25 g). After 24 hours, the captured beetles were sorted and accommodated in blankets, produced with newspaper and cotton, and stored for later identification. To evaluate ecosystem functions, two arena-type traps were installed, spaced 100 m apart and filled with 300 g of baits composed of pig and cattle manure. The soil stirred up by the beetles was dried at 60°C for three days and weighed. The results were significant for all variables in relation to land use, that is, according to the evaluated phytophysiognomy, differences were presented. Because the environment is a strong influencer of biodiversity. Thus, most of the individuals were found in forest areas, followed by pasture areas and finally, areas of agriculture composed of sugarcane, which were the ones with the lowest abundance of scarab beetles.
References
Alves, S. B., & Nakano, O. (1977). Influência do Dichotomius anaglypticus (Mannerheim, 1829) (Coleoptera, Scarabaeidae) no crescimento de plantas de napier. Ecossistema, 2(2), 31-33.
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32- 46
Anderson, M. J., & Willis, T. J. (2003). Canonical analyses of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511-525.
Andresen, E. (2005). Effects of Season and Vegetation Type on Community Organization of Dung Beetles in a Tropical Dry Forest1. Biotropica, 37(2), 291-300.
Bang, H. S., Lee, J. H., Kwon, O. S., Na, Y. E., Jang, Y. S., & Kim, W. H. (2005). Effects of paracoprid dung beetles (Coleoptera: scarabaeidae) on the growth of pasture herbage and on the underlying soil. Applied Soil Ecology, 29(2), 165–171.
Barragán, F., Moreno, C. E., Escobar, F., Halffter, G., & Navarrete, D. (2011). Negative impacts of human land use on dung beetle functional diversity. PloS one, 6(3), e17976.
Beath, D. N. (1996). Pollination of Amorphophallus johnsonii (Araceae) by carrion beetles (Phaeochrous amplus) in a Ghanaian rain forest. Journal of Tropical Ecology 12, 409-418.
Bogoni, J. A., & Hernández, M. I. M. (2014). Attractiveness of Native Mammal’s Feces of Different Trophic Guilds to Dung Beetles (Coleoptera: Scarabaeinae). Journal of Insect Science, 14 (299).
Braga, R. F., et al. (2013). Dund beetle comunity and fuctions along a habtat- disturbance gradiente in the Amazonb: a rapid assement of ecological functions assiciated to biodiversity. Plos One, 8 (2).
Braga, R. F., Korasaki, V., Audino, L. D., & Louzada, J. (2012). Are dung beetles driving dungfly abundance in traditional agricultural areas in the Amazon? Ecosystems 15, 1173–1181.
Brown, J., Scholtz, C. H., Janeau, J.-L., Grellier, S., & Podwojewski, P. (2010). Dung beetles (Coleoptera: scarabaeidae) can improve soil hydrological properties. Applied Soil Ecology, 46, 9–16.
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533–2547.
Clarke, K. R., & Gorley, R. N (2006). Primer v6 Permanova+. Primer-E Ltd., Plymouth (eds).
Davis, A. L. V. (1994). Association of Afrotropical Coleoptera (Scarabaeidae: Aphodiidae: Staphylinidae: Hydrophilidae: Histeridae) with dung and decaying matter: implications for selection of fly control agents for Australia. Journal of Natural History, 28, 383–399.
DeCastro-Arrazola, I., Hortal, J., Noriega, J. A., & Sanchez-Pinero, F. (2020). Assessing the functional relationship between dung beetle traits and dung removal, burial, and seedling emergence. Ecology, e03138.
Dormont, L., Epinat, G., & Lumaret, J. (2004). Trophic preferences mediated by olfactory cues in dung beetles colonizing cattle and horse dung. Environmental Entomology, 33(2), 370–377.
Dormont, L., Rapior, S., McKey, D. B., & Lumaret, J. (2007). Influence of dung volatiles on the process of resource selection by coprophagous beetles. Chemoecology, 17 (1), 23–30.
Dormont, L., Robert, P. J., Bessi`ere, J, M., Rapior,S., & Lumaret, J. P. (2010). Innate olfactory preferences in dung beetles. Journal of Experimental Biology, 213, 3177-3186.
Estrada, A., Halffter. G., Coates-Estrada, R., & Meritt, D. A. (1993). Dung beetles attracted to mammalian herbivore (Alouatta palliata) and omnivore (Nasua narica) dung in the tropical rainforest of Los Tuxtlas Mexico. Journal of Tropical Ecology, 9, 45–54.
Fincher, G. T., Stewart, T. B., & Davis, R. (1970). Attraction of coprophagous beetles to feces of various animals. The Journal of Parasitology, 378-383.
Finn, J. A., & Giller, P. S. (2002). Experimental investigations of colonisation by North temperate dung beetles of different types of domestic herbivore dung. Applied Soil Ecology, 20 (1), 1–13.
Food and Agriculture Organization of the United Nations - FAO. The State of Food Insecurity in the World. Quebec: FAO, 42 p. 2006.
Frank, K., Brückner, A., Hilpert, A., Heethoff, M., & Blüthgen, N. (2017a). Nutrient quality of vertebrate dung as a diet for dung beetles. Scientific Reports, 7, 12147.
Frank, K., Hülsmann, M., Assmann, T., Schmitt, T., & Blüthgen, N. (2017b). Land use affects dung beetle communities and their ecosystem service in forests and grasslands. Agriculture, Ecosystems & Environment, 243, 114–122.
Frank, K., Krell, F., Slade, E. M., Raine, E. H., Chiew, L. Y., Schmitt, T., Vairappan, C. S., Walter, P., Blüthgen, N., & Novotny, V. (2018). Global dung webs: high trophic generalism of dung beetles along the latitudinal diversity gradient. Ecology Letters, 21 (8), 1229–1236.
Galante, E., & Cartagena, M. C. (1999). Comparison of Mediterranean dung beetles (Coleoptera: Scarabaeoidea) in cattle and rabbit dung. Environmental Entomology, 28 (3), 420–424.
Gardner, T. A., et al. (2008). Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. Journal of applied ecology, 45 (3), 883-893.
Gleissman, S., & Gustavo, R. (2000). Agroecologia: processos ecológicos em agricultura sustentável. Porto alegre: Editora da UFRGS.
Halffter, G., & Edmonds, W. D. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach, 1982.
Hanski, I., Cambefort, Y. (1991). Competition in dung beetles. Dung beetle ecology, 305-329.
Haynes, R. J., & Williams, P. H. (1993). Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy, 49, 119-199.
Instituto Brasileiro de Geografia e Estatística – IBGE (2021). Cidades e Estados. https://www.ibge.gov.br/cidades-e-estados/mg/ituiutaba.html.
Johnson, S. N., Lopaticki, G., Barnett, K., Facey, S. L., Powell, J. R., & Hartley, S. E. (2016). An insect ecosystem engineer alleviates drought stress in plants without increasing plant susceptibility to an above-ground herbivore. Functional Ecology, 30, 894–902.
Kalisz, P. J., & Stone, E. L. (1984). Soil mixing by scarab beetles and pocket gophers in north central Florida. Soil Science Society American Journal, 48 (1), 169-172.
Kremen, C. (2005). Managing ecosystem services: what do we need to know about their ecology? Ecology Letters, 8(5), 468-479.
Lousey, J. E., & Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56, 311–323.
Manning, P., Slade, E. M., Beynon, S. A., & Lewis, O. T. (2016). Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agriculture, Ecosystems & Environment, 218, 87–94.
Mariategui, P., Speicys, C., Urretabizkaia, N., & Fernandéz, E. (2001). Efecto de Ontherus sulcator F. (Coleoptera: scarabaeidae) en la incorporacion ´ de esti´ercol al suelo. Zootecnia Tropical, 19, 131–138.
Martin-Piera, F., & Lobo, J. M. (1996). A comparative discussion of the trophic preferences in dung beetle communities. Miscellania Zoologica, 19, 13–31.
May, R. M. (1996). Conceptual aspects of the quantification of the extent of biological diversity. In: Hawksworth, D. L., ed. Biodiversity measurement and estimation. London: Chapman & Hall.13-20.
Menéndez, R., Webb, P., & Orwin, K. H. (2016). Complementary of dung beetle species with different functional behaviours influence dung-soil carbon cycling. Soil Biology and Biochemistry, 92, 142–148.
Miller, A. (1961). The mouth parts and digestive tract of adult dung beetles (Coleoptera: Scarabaeidae), with reference to the ingestion of helminth eggs. The Journal of parasitology, 47 (5), 735-744.
Miranda, C. H. B., Santos, J. C. C., & Bianchin, I. (1998). Contribuição de Onthophagus gazella à melhoria da fertilidade do solo pelo enterrio de massa fecal bovina fresca. 1. Estudo em casa de vegetação. Revista Brasileira de Zootecnia, 27, 681-685.
Miranda, C. H. B., Santos, J. C., & Bianchin, I. (2000). The role of Digitonthophagus gazella in pasture cleaning and production as result of burial of cattle dung. Pasturas Tropicales, 22, 14–18.
Nichols, E., et al. (2007). Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biological conservation, 137 (1), 1-19.
Nichols, E., et al. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological conservation, 141 (6), 1461-1474, 2008.
Nichols, E., & Goméz, A. (2014). Dung beetles and the epidemiology of parasitic nematodes: patterns, mechanisms and questions. Parasitology 141, 614–623.
Noriega, J. A., Hortal, J., Azcárate, F. M., Berg, M. P., Bonada, N., Briones, M. J. I., Del Toro, I., Goulson, D., Ibanez, S., Landis, D. A., Moretti, M., Potts, S. G., Slade, E. M., Stout, J. C., Ulyshen, M. D., Wackers, F. L., Woodcock, B. A., & Santos, A. M. C. (2018). Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 26, 8–23.
Ong, X. R., Slade, E. M., & Lim, M. L. M. (2020). Dung beetle-megafauna trophic networks in Singapore’s fragmented forests. Biotropica, 1-7.
Penttila, A., Slade, E. M., Simojoki, A., Riutta, T., Minkkinen, K., & Roslin, T. (2013). Quantifying beetle-mediated effects on gas fluxes from dung pats. PloS One, 8, e71454.
R Development Core Team (2010). R: A language and environment for statistical computing, reference index version 2.12.1. R Foundation for Statistical Computing, Vienna, Austria.
Raine, E. H., Mikich, S. B., Lewis, O. T., Riordan, P., Vaz-de-Mello, F. Z., & Slade, E. M. (2018). Extinctions of interactions: quantifying a dung beetle–mammal network. Ecosphere, 9, 2–15.
Sala, O., et al. (2000) Global biodiversity scenarios for the year 2100. Science, 287 (5459), 1770-1774.
Sands, B., & Wall, R. (2017). Dung beetles reduce livestock grastointestinal parasite availability on pasture. Journal of Applied Ecology, 54, 1180–1189.
Silveira, A. B., Lima A. de M., Steffler, C.E., Port, D., Castro, F., Trierveiler, F., Vinciprova, G., & Silveira, N. J. E. (2006). Guia de fauna - Usina Hidrelétrica Campos Novos. Florianópolis: Fábrica de Comunicação. 90 p.
Singh, A. P., et al. (2019). Observations on nesting activity, life cycle, and brood ball morphometry of the Bordered Dung Beetle Oniticellus cinctus (Fabricius, 1775) (Coleoptera: Scarabaeidae) under laboratory conditions. Journal of Threatened Taxa, 11 (9), 14137-14143.
Slade, E.M., Riutta, T., Roslin, T., Tuomisto, H.L. (2016). The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports, 6, 1–8.
Suding, K. N., & Hobbs, R. J. (2009) Threshold models in restoration and conservation: a developing framework. Trends in Ecology and Evolution, 24, 271–279.
Tixier, T., Bloor, J. M., & Lumaret, J. P. (2015). Species-specific effects of dung beetle abundance on dung removal and leaf litter decomposition. Acta Oecologica, 69, 31–34.
Tshikae, B. P., Davis, A. L. V., & Scholtz, C. H. (2008). Trophic association of a Dung Beetle Assemblage (Scarabaeidae: Scarabaeinae) in a Woodland Savanna of Botswana. Environmental Entomology, 37, 431–441.
Vaz-De-Mello, F. Z. (2000). Estado atual de conhecimento dos Scarabaeidae s. str. (Coleoptera: Scarabaeoidea) do Brasil. In: Martín-Piera, F., Morrone, J. J., & Melic, A. (Ed.). Hacia un Proyecto CYTED para el inventario y estimación de la diversidad entomológica en Iberoamérica: PrIBES-2000. Zaragoza: Sociedad Entomológica Aragones, 183-195.
Vernes, K., Pope, L. C., Hill, C. J., & Barlocher, F. (2005). Seasonality, dung specificity and competition in dung beetle assemblages in the Australian Wet Tropics, northeastern Australia. Journal of Tropical Ecology, 21 (1), 1–8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Amanda Fialho; Rafaella Gouveia Mendes; Josef Gastl Filho; Franciane Diniz Cogo; Ana Gabrielle Silva Novais; Izabela Vieira Fonseca; Bruna Nayara Gueiros do Nascimento
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.