Nutritional and biotechnological potential of SCOBY produced in green tea fermentation




Bacterial Cellulose; Functional food; Bacterial Cellulose ; Dietary Fiber; Unconventional proteins.


Kombucha is an ancient beverage with claims of functional properties that has become popular in Brazil, resulting from the fermentation of green and/or black tea by a symbiotic association of bacteria and yeast, SCOBY (Symbiotic Culture Of Bacteria and Yeast). It aims to carry out an integrative review of the literature to describe the main biological attributes of Kombucha, in order to demonstrate the health benefits, in the current perspective of the market and its biotechnological potential. Kombucha is a fermented tea-based drink of Asian origin, produced by a technique of fermenting sweetened black or green tea, promoted by a culture of yeast and bacteria. The chemical composition is variable both quantitatively and qualitatively, as it depends on the fermentation and substrates used in the initial tea, being related to the ingredients used in its manufacture and the processes applied. Its frequent consumption has benefits related to its antioxidant activity with potential ability to scavenge free radicals, and with that attracting the interest of the global market, in 2019, the kombucha industry was worth US$ 1.67 billion and is expected to grow more and more. Therefore, the use of SCOBY as a way of obtaining bacterial cellulose becomes an alternative with potential for profitability, in the characterization of the proximate composition of SCOBY, it is found levels of protein and dietary fiber in its proximate composition, in order to constitute a alternative source of human food.


Abir. (2000). Associação Brasileira das Indústrias de Refrigerantes e Bebidas não alcoólicas.

Agarwa, A., & D., B. C. (2020). Kombucha Market Size, Share & Trends Analysis Report By Flavor (Original, Flavored).

Al-Kalifawi, E. J., & Hassan, I. A. (2014). Factors influence on the yield of bacterial cellulose of Kombucha (Khubdat Humza). Baghdad Science Journal, 11(3), 1420-1428.

Avcioglu, N. H., Birben, M., & Bilkay, I. S. (2021). Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochemistry, 108, 60-68.

Battikh, H., Kamel, C., Amina, B., & Emna, A. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37(2), 231-236.

Blanc, P. J. (1996). Characterization of the tea fungus metabolites. Biotechnology Letters, 18(2), 138-142.

Blauth, C. M. (2019). Kombucha: tecnologia e produção. (Trabalho de conclusão de curso) Universidade Federal de Ciências da Saúde de Porto Alegre. Porto Alegre, Brasil.

Brasil (2019). Ministério Da Agricultura, Pecuária E Abastecimento. Constituição (2019). Instrução Normativa nº 41, de 17 de setembro de 2019. <

Borges, A., Medina, B., Conte-Junior, C., & Freitas, M. (2013). Aceitação sensorial e perfil de textura instrumental da carne cozida do pacu (Piaractus mesopotamicus), do tambaqui (Colossoma macropomum) e do seu híbrido tambacu eviscerados e estocados em gelo. Revista Brasileira de Ciência Veterinária, 20(3), 160-165.

Cardoso, R. R., Neto, R., D'almeida, C. T. S., Nascimento, P. N., Pressete, G. T., Azevedo, L., Martino, H. S. D., Camerone, L. C., Ferreira, M. S. L., & Barrosa, F. A. R. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782.

Chakravorty, S., Bhattacharya, S., Bhattacharya, D., Sarkar, S., & Gachhui, R. (2019). Kombucha: a promising functional beverage prepared from tea. Non-alcoholic beverages, 285-327.

Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63-72.

Chandrakala, S. K., Lobo, R. O, & Dias, F. O. (2019). Kombucha (bio-tea): an elixir for life? Nutrients in beverages, 591-616.

Chen, C., & Liu, B. Y. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89(5), 834-839.

Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., & Deniel, F. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5), 751-762.

Dima, S. O., Panaitescu, D. M., Orban, C., Ghiurea, M., Doncea, S. M., Fierascu, R. C., Nistor, C. L., Alexandrescu, E., Nicolae, C.A., Trică, B., Moraru, A., & Oancea, F. (2017). Bacterial nanocellulose from side-streams of kombucha beverages production: preparation and physical-chemical properties. Polymers, 9(8),374-380, 2017.

Domskiene, J., Sederaviciute, F., & Simonaityte, J. (2019). Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, 31, 644–652.

Dourado, F., Gama, M., & Rodrigues, A. C. (2017). A review on the toxicology and dietetic role of bacterial cellulose. Toxicology Reports, 4, 543-553.

Dufresne, C., & Farnworth, E. (2000). Tea, Kombucha, and health: a review. Food Research International, 33(6), 409-421.

Dutta, H., & Paul, S. K. (2019). Kombucha drink: production, quality, and safety aspects. Production and management of beverages. 259-288.

Eggensperger, C. G., Giagnorio, M., Holland, M. C., Dobosz, K. M., Schiffman, J. D., Tiraferri, A., & Zodrow, K. R. (2020) Sustainable living filtration membranes. Environmental Science & Technology Letters, 7(3), 213-218.

El-Wakil, N. A., Hassan, E. A., Hassan, M. L., & El-Salam, S. S. (2019). Bacterial cellulose/phytochemical’s extracts biocomposites for potential active wound dressings. Environmental Science and Pollution Research, 26(26), 26529-26541.

Emiljanowicz, K., & Malinowska-Pańczyk, E. (2020). Kombucha from alternative raw materials – the review. Critical Reviews in Food Science and Nutrition, 60(19), 185-3194.

Euromonitor Internacional, (2019). Euromonitor.

Fernandes, S. C. M, Oliveira, L., Freire, S. R., Silvestre, A. J. D, Neto, C. P, Gandini, A., & Desbriéres, J. (2009).Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chemistry, 11(12), 2023-2029.

Filippis, F., Troise, A. D., Vitaglione, P., & Ercolini, D. (2018). Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiology, 73, 11-16.

Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, N. N., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., & Gioia, D. (2019). Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients, 11(1), 1-22.

Goh, W. N.; Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., & Bhat, R. (2012). Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. International Food Research Journal, 19(1), 153-158.

Greenwalt, C. J., Ledford, R. A., & Steinkraus, K. H. (1998). Determination and characterization of the antimicrobial activity of the fermented tea kombucha. LWT-Food Science and Technology, 31(3), 291-296.

Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010).Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479-3500.

Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature's arts. Journal of Materials Science, 35(2), 261-270.

Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538-550.

Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K., & Yun, S. E. (2010). Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Science and Biotechnology, 19(3), 843-847.

Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392-398.

Jayabalan, R., & Waisundara, V. Y. (2019). Kombucha as a functional beverage. Functional and Medicinal Beverages. 413-446.

Kallel, L., Desseaux, V., Hamdi, M., Stocker, P., & Ajandouz, E. H. (2012). Insights into the fermentation biochemistry of Kombucha teas and potential impacts of Kombucha drinking on starch digestion. Food Research International, 49(1), 226-232.

Kapp, J. M., & Sumner, W. (2019). Kombucha: a systematic review of the empirical evidence of human health benefit. Annals of Epidemiology, 30, 66-70.

Kaufmann, K. (2013). Kombucha Rediscovered!: Revised Edition The Medicinal Benefits of an Ancient Healing Tea. Book Publishing Company,

Lee, K. Y., Buldum, G., Mantalaris, A., & Bismarck, A. (2014). More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14(1), 10-32.

Leonarski, E. (2020) Produção de bebida tipo kombucha e celulose bacteriana utilizando subproduto da acerola como matéria-prima. Dissertação (Mestrado em Engenharia de Alimentos) – Universidade Federal de Santa Catarina, Florianópolis, Brasil.

Machado, R. T. A., Gutierrez, J., Tercjak, A., Trovatti, E., Uahib, F.G.M., Moreno, G.P., Nascimento, P.; Berreta, A. A., Ribeiro, S. J. L., & Barud, H.S. (2016). Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers, 152, 841-849.

Malbaša, R., Lončar, E., Djurić, M., & Došenović, I. (2008). Effect of sucrose concentration on the products of Kombucha fermentation on molasses. Food Chemistry, 108(3), 926-932.

Marsh, A. J., O'sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38,171-178.

Mei, J. Y;, Yuan, Y., Wu, Y., & Li, C. Y. (2013). Characterization and antimicrobial properties of water chestnut starch-chitosan edible films. International Journal of Biological Macromolecules, 61, 169-174, 2013.

Moura, A. B. (2019) Monitoramento do processo fermentativo da kombucha de chá mate. Trabalho de conclusão de curso (Graduação em Nutrição) – Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brasil.

Murugesan, G. S., Sathishkumar, M., & Swaminathan, K. (2005). Supplementation of waste tea fungal biomass as a dietary ingredient for broiler chicks. Bioresource Technology, 96(16), 1743-1748.

Neves, E. Z.; Garcia, M. C. F.; Apati, G. P.; Pezzin, A. P. T.; Schneider, A. L. S. (2018). Development of bacterial cellulose membranes with incorporation of plant extract. In Congresso Brasileiro de Engenharia e Ciência dos Materiais, Foz do Iguaçu, Anais. Foz do Iguaçu: 2018.

Nguyen, N. K., Nguyen, P. B., Nguyen, H. T., & Le, P. H. (2015). Screening the optimal ratio of symbiosis between isolated yeast and acetic bacteria strain from traditional Kombucha for high-level production of glucuronic acid. LWT – Food Science and Technology, 64(2), 1149-1155.

Paludo, N. (2017). Desenvolvimento e caracterização de kombucha obtida a partir de chá verde e extrato de erva-mate: processo artesanal e escala laboratorial. Trabalho de conclusão de curso (Graduação em Engenharia de Alimentos) - Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Pure, A. E., & Pure, M. E. (2016). Antioxidant, antibacterial and color analysis of garlic fermented in kombucha and red grape vinegar. Applied Food Biotechnology, 3(4), 246-252.

Qing, Y., Sabo, R., Zhu, J. Y., Agarwal, U., Cai, Z., & Wu, Y. (2013). A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers, 97(1), 226-234.

Rapacci, M. (1997). Estudo comparativo das características físicas e químicas, reológicas e sensoriais do requeijão cremoso obtido por fermentação láctica e acidificação direta. Tese (Doutorado em Tecnologia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, São Paulo.

Reiss, J. Influence of different sugars on the metabolism of the tea fungus. (1994). Zeitschrift für Lebensmittel-Untersuchung und-Forschung, 198(3), 258-261.

Sacks, K. (2021). Keep your extra scoby from going to waste these recipes and ideas.

Santos, A. R.(2020). Avaliação cinética da fermentação de chá de erva-mate tostada por SCOBY de kombucha. Trabalho de conclusão de curso (Graduação em Engenharia de Alimentos), Universidade Federal de Santa Catarina, Florianópolis. Brasil.

Santos, M. J.(2016). Kombucha: caracterização da microbiota e desenvolvimento de novos produtos alimentares para uso em restauração. Dissertação (Mestrado em Ciências Gastronómicas), Universidade Nova de Lisboa, Lisboa, Portugal.

Sederaviciute, F., Bekampiene, P., & Domskiene, J. (2019). Effect of pretreatment procedure on properties of Kombucha fermented bacterial cellulose membrane. Polymer Testing, 78, 105941 – 105951.

Semjonovs, P. (2017). Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Applied Microbiology and Biotechnology, 101(3), 1003-1012.

Sinir, G. O., Tamer, C. C., & Suna, S. (2019). Kombucha tea: a promising fermented functional beverage. Fermented beverages, 401-432.

Standard, A.S.T.M. (2009) Standard Test Method for Tensile Properties of Thin Plastic Sheeting", ASTM International, West Conshohocken

Souza,M.T.,Silva,M.D.&Carvalho,R.(2010).Revisão Integrativa: O Que É E Como Fazer. Einstein (São Paulo), 8(1),102-106. <>. 45082010RW1134

Suhre, T. (2020) Kombuchas produzidas e comercializadas no Brasil: características físicoquímicas e composição microbiana. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Sun, T., Li, J., & Chen, C. (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis, 23(4), 709-718.

Suwanposri, A., Yukphan, P., Yamada, Y., & Ochaikul, D. (2014). Statistical optimisation of culture conditions for biocellulose production by Komagataeibacter sp. PAP1 using soya bean whey. Maejo International Journal of Science and Technology, 8(1), 1.

Teoh, A. L, Heard, G., & Cox, J. (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology, 95(2), 119-126.

Torres, F. G., Arroyo, J. J., & Troncoso, O. P. (2019). Bacterial cellulose nanocomposites: an all-nano type of material. Materials Science and Engineering C, 98, 1277-1293.

Tu, C., Tang, S., Azi, F., Hu, W., & Dong, M. (2019). Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods, 52, 81-89.

Viana, R. M, Sá, M. S. M., Barros, M. O., Borges, M. F., & Azeredo, H. M. C. (2018). Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydrate Polymers,196, 27-32.

Villarreal‐Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., & Taillandier, P. (2018). Understanding kombucha tea fermentation: a review. Journal of Food Science, 83(3), 580-588.

Vitas, J. S, Malbasa, R. V., Grahovac, J. A., & Loncar, E. S. (2013). Activity of kombucha fermented milk products with stinging nettle and winter savory. Chemical Industry and Chemical Engineering Quarterly, 19(1), 129-139.

Yang, Z. W., Ji, B. P., Zhou, F., Luo, Y., & Yang, Li. (2009). Hypocholesterolaemic and antioxidant effects of kombucha tea in high cholesterol fed mice. Journal of the Science of Food and Agriculture, 89(1), 150-156.

Zhu, C., Li, F., Zhou, X., Lin, L., & Zhang, T. (2014). Kombucha‐synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. Journal of Biomedical Materials Research Part A, 102(5), 1548-1557.



How to Cite

MORAIS, M. G. C. .; MENEZES, M. de S.; BORDULIS, C. B. T. .; SANTOS, P. A. dos S. dos .; COSTA, M. R. S. .; LIMA, T. P. de . Nutritional and biotechnological potential of SCOBY produced in green tea fermentation. Research, Society and Development, [S. l.], v. 11, n. 11, p. e575111134064, 2022. DOI: 10.33448/rsd-v11i11.34064. Disponível em: Acesso em: 28 sep. 2022.



Review Article