Impact variables in mining scheduling

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34146

Keywords:

Optimization; Principal component analysis; Advances; Scheduling.

Abstract

Mine planning is developed considering economic variables, grades, lithology, spatial position. These variables are used to determine the final pit limit and sequencing of operations. Normally, only the variables related to the grade are exhaustively sampled. The other variables are configured with average values. Multivariate statistical techniques make it possible to determine the variables with the greatest impact. Using a geological model of copper and gold, the final pit and mining sequencing will be determined using the Lerchs-Grossmann algorithm. The resulting block model will be evaluated for non-standard variables in the population. The population elements were standardized and properly transformed into continuous variables. The principal component analysis technique will be used to determine the most important variables of the mine and final pit sequencing. The objective of this work is to determine the most influential variables in determining the final pit and mining sequencing. Mine planning tools only present the end result of planning. They do not point out the most sensitive variables. It is important to determine the variables in which a small change in value is capable of turning a mined block into barren. The work confirmed the importance of economic variables related to the benefit function, however, it quantified that the spatial positioning of the block has similar importance to some economic variables.

References

Ahmadi, M. R. (2018). Cutoff grade optimization based on maximizing net present value using a computer model. Journal of Sustainable Mining, 17(2), 68–75. https://doi.org/10.1016/j.jsm.2018.04.002

Bakke, H. A., Leite, A. S. de M., & Silva, L. B. da. (2008). Estatística Multivariada: Aplicação Da Análise Fatorial Na Engenharia De Produção. Revista Gestão Industrial, 4, 01–14.

Boezio, M. N. M. (2010). Estudo das metodologias alternativas da geoestatística multivariada aplicadas a estimativa de teores de depósitos de ferro. 465.

Borouche, J. M. ., & G, S. (1982). Análise de dados (Zahar (ed.)).

Burgarelli, H. R., Souza, F. R., Nader, A. S., Navarro Torres, V. F., Câmara, T. R., Ortiz, C. E. A., & Galery, R. (2018). Direct block scheduling under marketing uncertainties. REM, 71(2), 275–280.

Campos, A. C. A., & Girodo, A.C,Valente, J. (2000). Otimização de cavas ou estacionarização de parâmetros: Qual caminho a seguir? In IBRAM (Ed.), I Congresso Brasileiro de Mina a Céu Aberto & I Congresso Brasileiro de Mina Subterrânea.

Drummond, R. D., & Vidal, A. C. (2011). Comparação entre as técnicas multivariadas MAF e PCA aplicadas na classificação de eletrofácies. Revista Brasileira de Geofisica, 29(3), 497–509. https://doi.org/10.22564/rbgf.v29i3.95

Fontoura, D. M. (2017). Método para auxílio na definição da quantidade de minério liberado. Universidade Federal do Rio Grande do SUl.

Hall, B. (2014). Cut-off Grades and Optimising the Strategic Mine Plan Cut-off Grades and Optimising the Strategic Mine Plan.

Mallmann, E. M. (2015). Pesquisa-ação educacional: preocupação temática, análise e interpretação crítico-reflexiva (C. de Pesquisa (ed.), 45th ed.).

Mingoti, S. A. (2017). Análise de Dados Através de Métodos de Estatística Multivariada: Uma Abordagem Aplicada (E. UFMG (ed.), 2nd ed.).

Mustapha, H., & Dimitrakopoulos, R. (2011). HOSIM: A high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns. Computers and Geosciences, 37(9), 1242–1253. https://doi.org/10.1016/j.cageo.2010.09.007

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Prichoa, C. E., & Ribeiro, S. R. A. (2013). Aplicação da análise de componentes principais em dados extraídos automaticamente de imagens de satélite landsat 5 TM. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto.

Rendu, J.-M. (2014). An Introduction to Cut-Off Grade Estimation (Second). Society for Mining, Metallurgy & Exploration (SME).

Rendu, J. (2008). An Introduction to Cut-off Grade Estimation. Society for Mining, Metallurgy, And Exploration, Inc. (SME).

Richards, J. A. (1993). Remote Sensing Digital Image Analysis - An Introduction (2nd ed.). Springer-Verlag.

Souza, F. R., Burgarelli, H. R., Nader, A. S., Ortiz, C. E. A., Chaves, L. S., Carvalho, L. A., Torres, V. F. N., Câmara, T. R., & Galery, R. (2018). Direct block scheduling technology: Analysis of Avidity. REM - International Engineering Journal, 71(1), 97–104. https://doi.org/10.1590/0370-44672017710129

Tang, F., & Tao, H. (2006). Binary principal component analysis. BMVC 2006 - Proceedings of the British Machine Vision Conference 2006, 377–386. https://doi.org/10.5244/c.20.39

Published

10/09/2022

How to Cite

CAMPOS, B. I. S. .; SOUZA, F. R. .; LIMA, H. M. de . Impact variables in mining scheduling . Research, Society and Development, [S. l.], v. 11, n. 12, p. e107111234146, 2022. DOI: 10.33448/rsd-v11i12.34146. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34146. Acesso em: 22 dec. 2024.

Issue

Section

Exact and Earth Sciences