Impact variables in mining scheduling
DOI:
https://doi.org/10.33448/rsd-v11i12.34146Keywords:
Optimization; Principal component analysis; Advances; Scheduling.Abstract
Mine planning is developed considering economic variables, grades, lithology, spatial position. These variables are used to determine the final pit limit and sequencing of operations. Normally, only the variables related to the grade are exhaustively sampled. The other variables are configured with average values. Multivariate statistical techniques make it possible to determine the variables with the greatest impact. Using a geological model of copper and gold, the final pit and mining sequencing will be determined using the Lerchs-Grossmann algorithm. The resulting block model will be evaluated for non-standard variables in the population. The population elements were standardized and properly transformed into continuous variables. The principal component analysis technique will be used to determine the most important variables of the mine and final pit sequencing. The objective of this work is to determine the most influential variables in determining the final pit and mining sequencing. Mine planning tools only present the end result of planning. They do not point out the most sensitive variables. It is important to determine the variables in which a small change in value is capable of turning a mined block into barren. The work confirmed the importance of economic variables related to the benefit function, however, it quantified that the spatial positioning of the block has similar importance to some economic variables.
References
Ahmadi, M. R. (2018). Cutoff grade optimization based on maximizing net present value using a computer model. Journal of Sustainable Mining, 17(2), 68–75. https://doi.org/10.1016/j.jsm.2018.04.002
Bakke, H. A., Leite, A. S. de M., & Silva, L. B. da. (2008). Estatística Multivariada: Aplicação Da Análise Fatorial Na Engenharia De Produção. Revista Gestão Industrial, 4, 01–14.
Boezio, M. N. M. (2010). Estudo das metodologias alternativas da geoestatística multivariada aplicadas a estimativa de teores de depósitos de ferro. 465.
Borouche, J. M. ., & G, S. (1982). Análise de dados (Zahar (ed.)).
Burgarelli, H. R., Souza, F. R., Nader, A. S., Navarro Torres, V. F., Câmara, T. R., Ortiz, C. E. A., & Galery, R. (2018). Direct block scheduling under marketing uncertainties. REM, 71(2), 275–280.
Campos, A. C. A., & Girodo, A.C,Valente, J. (2000). Otimização de cavas ou estacionarização de parâmetros: Qual caminho a seguir? In IBRAM (Ed.), I Congresso Brasileiro de Mina a Céu Aberto & I Congresso Brasileiro de Mina Subterrânea.
Drummond, R. D., & Vidal, A. C. (2011). Comparação entre as técnicas multivariadas MAF e PCA aplicadas na classificação de eletrofácies. Revista Brasileira de Geofisica, 29(3), 497–509. https://doi.org/10.22564/rbgf.v29i3.95
Fontoura, D. M. (2017). Método para auxílio na definição da quantidade de minério liberado. Universidade Federal do Rio Grande do SUl.
Hall, B. (2014). Cut-off Grades and Optimising the Strategic Mine Plan Cut-off Grades and Optimising the Strategic Mine Plan.
Mallmann, E. M. (2015). Pesquisa-ação educacional: preocupação temática, análise e interpretação crítico-reflexiva (C. de Pesquisa (ed.), 45th ed.).
Mingoti, S. A. (2017). Análise de Dados Através de Métodos de Estatística Multivariada: Uma Abordagem Aplicada (E. UFMG (ed.), 2nd ed.).
Mustapha, H., & Dimitrakopoulos, R. (2011). HOSIM: A high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns. Computers and Geosciences, 37(9), 1242–1253. https://doi.org/10.1016/j.cageo.2010.09.007
Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.
Prichoa, C. E., & Ribeiro, S. R. A. (2013). Aplicação da análise de componentes principais em dados extraídos automaticamente de imagens de satélite landsat 5 TM. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto.
Rendu, J.-M. (2014). An Introduction to Cut-Off Grade Estimation (Second). Society for Mining, Metallurgy & Exploration (SME).
Rendu, J. (2008). An Introduction to Cut-off Grade Estimation. Society for Mining, Metallurgy, And Exploration, Inc. (SME).
Richards, J. A. (1993). Remote Sensing Digital Image Analysis - An Introduction (2nd ed.). Springer-Verlag.
Souza, F. R., Burgarelli, H. R., Nader, A. S., Ortiz, C. E. A., Chaves, L. S., Carvalho, L. A., Torres, V. F. N., Câmara, T. R., & Galery, R. (2018). Direct block scheduling technology: Analysis of Avidity. REM - International Engineering Journal, 71(1), 97–104. https://doi.org/10.1590/0370-44672017710129
Tang, F., & Tao, H. (2006). Binary principal component analysis. BMVC 2006 - Proceedings of the British Machine Vision Conference 2006, 377–386. https://doi.org/10.5244/c.20.39
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Barbara Isabela Silva Campos; Felipe Ribeiro Souza; Hernani Mota de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.