Effect of Ultraviolet-C Radiation on the Morphology of Cyanobacteria Nostoc sp. LBALBR-2 Isolated from Supply Reservoir (Belém, Pará, Brazil)
DOI:
https://doi.org/10.33448/rsd-v11i12.34391Keywords:
Cyanobacteria; Bloom; Microcosm.Abstract
Cyanobacteria are photosynthetic prokaryotic organisms that in aquatic environments can compose the phytoplankton and phytobenthos, being important in the primary production of these ecosystems. The objective of this work was to identify the main morphological variations of the cells, filaments and thallus of the cyanobacteria Nostoc sp. LBALBR-2 submitted to ultraviolet radiation (UV-C) in microcosm systems. The cyanobacteria Nostoc sp. was subjected to four treatments: 1- control treatment in nutrient medium; 2- treatment in nutrient medium with exposure to UV-C radiation; 3- control treatment in medium without nutrients and 4- treatment in medium without nutrients with exposure to UV-C radiation. Optical density and chlorophyll-a analyses were performed to determine the growth of Nostoc populations and microscopic analyses to characterize the morphological development of the species. Lack of nutrients generated short trichomes with terminal heterocytes, scattered solitary akinetes and appearance of hormogonia. On nutrient medium the trichomes of Nostoc sp. showed predominantly the vegetative serial form. Cultures exposed to UV-C produced anomalous cells, thick mucilage, fragmented trichomes and hormogonia. It is concluded that Nostoc sp. LBALBR-2 grew well under eutrophication conditions and although it showed cell deformation it was resistant to UV-C radiation.
References
Allaf, M. M. & Peerhossaini, H. (2022). Cyanobacteria: Model Microorganisms and Beyond. Microorganisms. 10, 696. 2022 Mar 24,10(4):696.
American Public Health Association. (APHA), American WWAAWE, Federation (WEF) (2017) Standard methods for the examination of water and wasterwater. 23th ed. Washington, DC: American Public Health Association.
Bittencourt-Oliveira, M., Piccin-Santos, V., Moura, A. N., Aragão-Tavares, N. K. C. & Cordeiro-Araújo, M. K. (2014). Cyanobacteria, microcystins and cylindrospermopsin in public drinking supply reservoirs of Brazil. Anais da Academia Brasileira de Ciências, 86(1), 297-310.
Calijuri, M. C., Alves, M. S. A. & Santos, A. C. A. (2006). Cianobactérias e cianotoxinas em águas continentais. São Carlos: RiMa. 108 p
Cirés, S., Wörmer, L., Agha, R. & Quesada, A. (2013). Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. Journal of Plankton Research, 35 (6), p. 1254–1266.
Costa, S. D., Martins-da-Silva, R. C. V., Bicudo, C. E. M., Barros, K. D. N. & Oliveira, M. E. C. (2014). Algas e Cianobactérias Continentais no Estado do Pará, Brasil. Belém, PA: Embrapa Amazônia Oriental, 2014. 351 p.
Dextro, R. B., Moutinho, F. H. M. & Nordi, C. S. F. (2018). Growth and special structures production of Nostoc paludosum (Nostocaceae, Cyanobacteria) under nutrient starvation and different light intensities. Revista Ambiente & Água, 13(6), e2191.
Deyab, M., Mofeed, J., El-Bilawy, E. & Ward, F. (2020). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavírus. Arch Microbiol. 2020 Mar,202(2):213-223. doi: 10.1007/s00203-019-01734-9.
Geraldes, V., Jacinavicius, F. R., Genuário, D. B. & Pinto, E. (2020). Identification and distribution of mycosporine-like amino acids in Brazilian cyanobacteria using ultrahigh-performance liquid chromatography with diode array detection coupled to quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 34 (S3), e8634.
Gheda, S. F. & Ismail, G. A. (2020). Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. Anais da Academia Brasileira de Ciência. 92(2), e20190934.
Gonzalez, A., Riley, K. W., Harwood, T. V., Zuniga, E. G. & Risser, D. D. (2019). A Tripartite, hierarchical sigma factor cascade promotes hormogonium development in the filamentous cyanobacterium Nostoc punctiforme. mSphere. May 1,4(3):e00231-19. doi: 10.1128/mSphere.00231-19.
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.
Harwood, T. V. & Risser. D. D. (2021). The primary transcriptome of hormogonia from a filamentous cyanobacterium defined by cappable-seq. Microbiology (Reading), 167(11), 167:001111
Hughes, S. E. & Marion, J. W. (2021). Cyanobacteria Growth in Nitrogen- & Phosphorus-Spiked Water from a Hypereutrophic Reservoir in Kentucky, USA. Journal of Environmental Protection, 12, 75-89.
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H. & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-483.
Jantaro, S., Pothipongsa, A., Khanthasuwan, S. & Incharoensakd, A. (2011). Short-Term UV-B and UV-C Radiations Preferentially Decrease Spermidine Contents and Arginine Decarboxylase Transcript Levels of Synechocystis sp. PCC 6803. Current Microbiology. 62:420–426.
Jiang, Y., Liu, Y. & Zhang, J. (2020). Antibiotic contaminants reduced the treatment efficiency of UV-C on Microcystis aeruginosa through hormesis. Environmental Pollution, 261, 114193.
Jodłowska, S. & Latała, A. (2013). Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium. Photosynthetica, 51, 202-214.
Khalifa, S. A. M., Shedid, E. S., Saied, E. M., Jassbi, A. R., Jamebozorgi, F. H., Rateb, M. E., Du, M., Abdel-Daim, M. M., Kai, G. Y., Al-Hammady, M. A. M., Xiao, J., Guo, Z. & El-Seedi, H. R. (2021). Cyanobacteria - From the Oceans to the Potential Biotechnological and Biomedical Applications. Marine Drugs, 19, 241.
Komárek J. (2013). Cyanoprokaryota. 3. Heterocytous genera. – In: Büdel, B., Gärtner, G., Krienitz, L. & Schagerl, M. (eds), Süswasserflora von Mitteleuropa/Freshwater flora of Central Europe, p. 1130, Springer Spektrum Berlin, Heidelberg.
Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–335.
Latifi, A., Ruiz, M. & Zhang, C. (2009). Oxidative stress in cyanobacteria. FEMS Microbiology Reviews 33, 258–278.
Legrand, B., Lamarque, A., Sabart, M. & Latour, D. (2016). Characterization of Akinetes from Cyanobacterial Strains and Lake Sediment: A Study of Their Resistance and Toxic Potential. Harmful Algae, 59, 42-50.
Mazur-Marzec, H., Cegłowska, M., Konkel R. & Pyrć, K. (2021). Antiviral Cyanometabolites-A Review. Biomolecules. 11(3):474. doi: 10.3390/biom11030474.
Meeks, J. C., Campbell, E. L., Summers, M. L. & Wong, F. C. (2002). Cellular differentiation in the cyanobacterium Nostoc punctiforme. Archives of Microbiology, 178, 395–403.
Mehnert, G., Rucker, J. & Wiedner, C. (2014). Population dynamics and akinete formation of an invasive and a native cyanobacterium in temperate lakes. Journal of Plankton Research 36 (2): 378–387.
Mota, R., Pereira, S. B., Meazzini, M., Fernandes, R., Santos, A, Evans, C. A., Philippis, R., Wright, P. C. & Tamagnini, P. (2015). Differential proteomes of the cyanobacterium Cyanothece sp. CCY 0110 upon exposure to heavy metals. Data in Brief. 4, 152-158.
Ortiz-Moreno, M. L., Poblador, J. C., Agredo, J. & Solarte-Murillo, L. V. (2020). Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum. Universitas Scientiarum, 25(1), 113-148.
Ou, H., Gao, N., Deng, Y., Qiao, J. & Wang, H. (2012). Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Research, 46(4), 1241-1250.
Perez, R., Forchhammer, K., Salerno, G. & Maldener, I. (2016). Clear differences in metabolic and morphological adaptations of akinetes of two Nostocales living in different habitats. Microbiology (Reading). 162(2), 214-223.
Phukan, T. & Syiem, M. B. (2019). Modulation of oxidant and antioxidant homeostasis in the cyanobacterium Nostoc muscorum Meg1 under UV-C radiation stress. Aquatic Toxicology. 213, 105228.
Rastogi, P. R. & Incharoensakdi, A. (2014). UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556. Journal of Photochemistry and Photobiology B: Biology, 130, 287-292.
Richa, R. P. S. (2015). Biochemical characterization of sunscreening mycosporine-like amino acids from two Nostoc species inhabiting diverse habitats. Protoplasma, 252(1), 199-208.
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61.
Sakai, H., Katayama, H., Oguma, K. & Ohgaki, S. (2009). Kinetics of Microcystis aeruginosa Growth and Intracellular Microcystins Release after UV Irradiation. Environmental Science & Technology, 43, 896–901.
Silva, G. M., Gomes, A. L., Cunha, C. J. S., Costa Tavares, V. B., Pinheiro, S. C. C. & Sousa, E. B. (2020). Caracterização de Nostoc sp. LBALBR-2 (Cianobactéria) isolada das raízes de macrófitas do reservatório Bolonha (Belém-Pará) sob diferentes condições de temperatura, luz e umidade. Brazilian Journal of Animal and Environmental Research, 3(4), 4242-4256.
Silva, H. J., Cortiñas, T. I. & Ertola, R. J. (1989). Effect of nutritional factors on the culture of Nostoc sp. as a source of phycobiliproteins. Applied Microbiology and Biotechnology 31, 293–297.
Singh, S. P. & Montgomery, B. L. (2011). Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends in Microbiology, 19 (6), 278-285.
Singh, Y., Khattar, J. I. S., Singh, D. P., Rahi, P. & Gulati, A. (2014). Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. Journal of Biosciences, 39, 643–657.
Śliwińska-Wilczewska, S., Gergella, K. & Latała, A. (2016). Allelopathic activity of the Synechococcus sp. (Cyanobacteria, Chroococcales) on selected cyanobacteria species. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 1: 115–126.
Soule, T., Shipe, D. & Lothamer, J. (2016). Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress. Curr Microbiol. 73(4): 455-62.
Tao, Y., Zhang, X, Au, D. W. T., Mao, X. & Yuan, K. (2010). The effects of sub-lethal UV-C irradiation on growth and cell integrity of cyanobacteria and green algae. Chemosphere, 78, 541–547.
USEPA (2006). Environmental Protection Agency of Ground Water and Drinking Water Standards and Risk Management Division. Distribution System Indicators of Drinking Water Quality. Pennsylvania Ave., NW Washington DC.
Werner, V. R., Cabezudo, M. M., Neuhaus, E. B., Caires, T. A., Sant'Anna, C. L., Azevedo, M. T. P., Malone, C., Gama Jr., W.A., Santos, K.R.S. & Menezes, M. (2015). Cyanophyceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. (http://floradobrasil2015.jbrj.gov.br/FB108051)
Wood, S. M., Kremp, A., Savela, H., Akter, S., Vartti, V. P., Saija Saarni, S. & Suikkanen, S. (2021). Cyanobacterial Akinete Distribution, Viability, and Cyanotoxin Records in Sediment Archives From the Northern Baltic Sea. Front Microbiol, 15, 12:681881. doi: 10.3389/fmicb.2021.681881
Zucchi, M. R. & Necchi O., Jr. (2001). Effects of Temperature, Irradiance and Photoperiod on Growth and Pigment Content in some Freshwater Red Algae in Culture. Phycological Research, 49 (2), 103-114, Disponível em: <http://hdl.handle.net/11449/66556>.
Zuniga, E. G., Figueroa, N. M., Gonzalez, A., Pantoja, A. P. & Risser, D. D. (2020). The Hybrid Histidine Kinase HrmK Is an Early-Acting Factor in the Hormogonium Gene Regulatory Network. Journal of Bacteriology. 202:e00675-19.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eliane Brabo de Sousa; Aline Lemos Gomes ; Celly Jenniffer da Silva Cunha; Paola Vitória Brito Pires; Lisbethe Melo Sckyr Ahndrew; Vanessa Bandeira da Costa-Tavares
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.