Different types of explants and natural ventilation systems influence the accumulation of dry weight and of total phenolic compounds in Aloysia gratissima (Verbenaceae)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34446

Keywords:

Plant Tissue Culture; Secondary Metabolites; Photoautotrophic; Micropropagation.

Abstract

The objective of this study was to evaluate the effect of the use of different natural ventilation systems on the growth and accumulation of total phenolic compounds in Aloysia gratissima. Nodal and apical segments with 1 pair of leaves were inoculated in flasks containing ½ MS culture medium without sucrose and supplemented with 0.1 mg L-1 indole-butyric acid. The cultivation systems included a conventional system (NMS) and alternative membrane systems with 1 (AMS1), 2 (AMS2) and 4 (AMS4) low-cost membranes. After 30 days, the in vitro growth, leaf area, dry weight and accumulation of phenolic compounds were evaluated. Plantlets from apical segments showed superior results in all variables analyzed. The use of the NMS compromised plantlet growth. However, improved results were obtained with the use of porous membranes, with the best growth observed in AMS4. The leaf area of plantlets originating from apical segments was 3.03 times greater than that of plantlets from nodal segments. Plantlets in the NMS had the lowest values of leaf area, root length, number of leaves and dry weight. However, the use of membranes allowed higher growth. The AMS4 treatment increased the leaf dry weight accumulation by 6.13-fold compared to that obtained with the NMS treatment. The accumulation of total phenolic compounds increased with the use of greater numbers of porous membranes. The use of apical segments and lids with 4 porous membranes is recommended for micropropagation of the species. The use of an alternative membrane system positively influences the accumulation of total phenolic compounds.

Author Biographies

Adriane Duarte Coelho, Universidade Federal de Lavras

Agriculture Department

Jeremias José Ferreira Leite, Universidade Federal de Lavras

Agriculture Department

Gustavo Costa Santos, Universidade Federal de Lavras

Agriculture Department

Rafael Marlon Alves de Assis, Universidade Federal de Lavras

Agriculture Department

Érica Alves Marques, Universidade Federal de Lavras

Agriculture Department

Alexandre Alves de Carvalho, Universidade Federal de Lavras

Agriculture Department

Suzan Kelly Vilela Bertolucci, Universidade Federal de Lavras

Agriculture Department

José Eduardo Brasil Pereira Pinto, Universidade Federal de Lavras

Agriculture Department

References

Anis, M., Faisal, M., & Singh, S. (2003). Micropropagation of mulberry (Morus alba L.) through in vitro culture of shoot tip and nodal explants. Plant Tissue Culture, 13(1), 47 – 51.

Ayuso, M., García-Pérez, P., Ramil-Rego, P., Gallego, P. P., & Barreal, M. E. (2019). In vitro culture of the endangered plant Eryngium viviparum as dual strategy for its ex situ conservation and source of bioactive compounds. Plant Cell, Tissue and Organ Culture (PCTOC), 138(3), 427-435.

Badr, A., Angers, P., & Desjardins, Y. (2011). Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell, Tissue and Organ Culture (PCTOC), 107(1), 13-24.

Benincasa, M. M. P. (2003). Analysis of plant growth: basic notions. Fundação de Estudos e Pesquisas em Agronomia. Jaboticabal, São Paulo., 42.

Benovit, S. C., Silva, L. L., Salbego, J., Loro, V. L., Mallmann, C. A., Baldisserotto, B., & Heinzmann, B. M. (2015). Anesthetic activity and bio-guided fractionation of the essential oil of Aloysia gratissima (Gillies & Hook.) Tronc. in silver catfish Rhamdia quelen. Anais da Academia Brasileira de Ciencias, 87(3), 1675-1689.

Couto, T. R., Silva, J. R., Netto, A. T., Carvalho, V. S., & Campostrini, E. (2014). Photosynthetic efficiency and genotypes growth of pineapple cultivated in vitro in different qualities of light, growing jar types and concentration of sucrose. Revista Brasileira de Fruticultura, 36, 459-466.

de Oliveira, T., Balduino, M. C. M., de Carvalho, A. A., Bertolucci, S. K. V., Cossa, M. C., Coelho, A. D., & Pinto, J. E. B. P. (2021). The effect of alternative membrane system, sucrose, and culture methods under photosynthetic photon flux on growth and volatile compounds of mint in vitro. In Vitro Cellular & Developmental Biology - Plant, 57(3), 529-540.

Dias, M. I., Sousa, M. J., Alves, R. C., & Ferreira, I. C. F. R. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 82(1), 9-22.

Edward, G. W., Alias, A. J. M., Subramanian, K. M., & Nallyan, S. (2011). Micropropagation of Alternanthera sessilis (L.) using shoot tip and nodal segments. Iranian Journal of Biotechnology, 9(3), 206 – 212.

Golle, D. P., Reiniger, L. R. S., Curti, A. R., & León, E. A. B. (2012). In vitro establishment and development of Eugenia involucrata dc.: influence of explant source and nutritional medium. Ciência Florestal, 22(1), 207-214.

Horacio, P., & Martinez-Noel, G. (2013). Sucrose signaling in plants: A world yet to be explored. Plant Signaling & Behavior, 8(3), e23316.

Iarema, L., da Cruz, A. C. F., Saldanha, C. W., Dias, L. L. C., Vieira, R. F., de Oliveira, E. J., & Otoni, W. C. (2012). Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell, Tissue and Organ Culture (PCTOC), 110(2), 227-238.

Kozai, T., & Kubota, C. (2001). Developing a photoautotrophic micropropagation system for woody plants. Journal of Plant Research, 114(4), 525-537.

Kozai, T., Kubota, C., & Jeong, B. R. (1997). Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell, Tissue and Organ Culture, 51(1), 49-56.

Lazzarini, L. E. S., Bertolucci, S. K. V., de Carvalho, A. A., Santiago, A. C., Pacheco, F. V., Yucesan, B., & Pinto, J. E. B. P. (2019). Explant type and natural ventilation systems influence growth and content of carvacrol and thymol of Lippia gracilis Schauer. Plant Cell, Tissue and Organ Culture (PCTOC), 137(1), 33-43.

Magalhães, A. C. N. (1979). Análise quantitativa do crescimento. Fisiologia vegetal, 1(2), 333-350.

Martins, J. P. R., Verdoodt, V., Pasqual, M., & de Proft, M. (2015). Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Plant Cell, Tissue and Organ Culture (PCTOC), 123(1), 121-132.

Moroni, P., & O’leary. (2019). Flora do Brasil 2020 under construction.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(1), 473-497.

Nicoloso, F. T., & Erig, A. C. (2002). Efeito do tipo de segmento nodal e tamanho do recipiente no crescimento de plantas de Pfaffia glomerata in vitro. Ciência e Agrotecnologia, 1(1), 1499-1506.

Pereira, J. E. S., & Fortes, G. R. L. (2001). Apple multiplication and acclimatization influenced by the explant type and time of exposition in root culture media. Revista Brasileira de Fruticultura, 23(2), 417-420.

Pereira, J. E. S., França, R. B. d., Dantas, A. C. M., & Fortes, G. R. L. (2005). Influence of bud numbers, presence or absence of leaves and explant position on the in vitro multiplication of potato. Horticultura Brasileira, 23(1), 86-89.

Rani, G., Talwar, D., Nagpal, A., & Virk, G. S. (2006). Micropropagation of Coleus blumei from nodal segments and shoot tips. Biologia Plantarum, 50(4), 496-500.

Ríos-Ríos, A. M., da Silva, J. V. S., Fernandes, J. V. M., Batista, D. S., Silva, T. D., Chagas, K., & Fernandes, S. A. (2019). Micropropagation of Piper crassinervium: an improved protocol for faster growth and augmented production of phenolic compounds. Plant Cell, Tissue and Organ Culture (PCTOC), 137(3), 495-509.

Rocha, T. T., Araújo, D. X., da Silva, A. M., de Oliveira, J. P. V., de Carvalho, A. A., Gavilanes, M. L., & Pinto, J. E. B. P. (2022). Morphoanatomy and changes in antioxidant defense associated with the natural ventilation system of micropropagated Lippia dulcis plantlets. Plant Cell, Tissue and Organ Culture (PCTOC), 1-15.

Saldanha, C. W., Otoni, C. G., de Azevedo, J. L. F., Dias, L. L. C., do Rêgo, M. M., & Otoni, W. C. (2012). A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell, Tissue and Organ Culture (PCTOC), 110(3), 413-422.

Santos, A., Nunes, T., Coutinho, T., & Silva, M. (2015). Popular use of medicinal species of the Verbenaceae family in Brazil. Revista Brasileira de Plantas Medicinais, 17, 980-991.

Ševčíková, H., Lhotáková, Z., Hamet, J., & Lipavská, H. (2019). Mixotrophic in vitro cultivations: the way to go astray in plant physiology. Physiologia Plantarum, 167(3), 365-377.

Silva, A. B. d., dos Reis, C. O., Cazetta, J. O., Carlin, S. D., Landgraf, P. R. C., & dos Reis, M. (2016). Effects of exogenous proline and a natural ventilation system on the in vitro growth of orchids. Bioscience Journal, 32(3), 619-626.

Silva, A. C. d., Souza, P. E. d., Amaral, D. C., Zeviani, W. M., & Pinto, J. E. B. P. (2014). Essential oils from Hyptis marrubioides, Aloysia gratissima and Cordia verbenacea reduce the progress of Asian soybean rust. Acta Scientiarum. Agronomy, 36(2), 159-166.

Silva, S. T., Bertolucci, S. K. V., da Cunha, S. H. B., Lazzarini, L. E. S., Tavares, M. C., & Pinto, J. E. B. P. (2017). Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell, Tissue and Organ Culture (PCTOC), 129(3), 501-510.

Silveira, A. A. d. C., Gonçalves, L. A., Silva, E. C., Sales, N. d. S., Silva, L. C. d., & Sibov, S. T. (2019). Shoot proliferation, leaf anatomy and pigment content of Eugenia dysenterica growing in conventional and natural ventilation systems. Revista Ceres, 66(5), 363-371.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid Reagents. American Journal of Enology and Viticulture, 16(3), 144.

Souza, A., & Wiest, J. (2007). : Antibacterial activity of Aloysia gratissima (Gill et Hook) Tronc. (garupá, herbsaint), used in the traditional medicine in Rio Grande do Sul State - Brazil. . Revista Brasileira de Plantas Medicinais, 9(3), 23-29.

Thorpe, T. A., & Harry, I. S. (1990). Special problems and prospects in the propagation of woody species. In: Rodríguez R, Tamés R. S, Durzan D. J, editors. . In R. Rodríguez, R. S. Tamés, & D. J. Durzan (Eds.), Plant Aging: Basic and Applied Approaches (pp. 67-74). Springer US.

Wu, H.-C., & Lin, C.-C. (2013). Carbon dioxide enrichment during photoautotrophic micropropagation of Protea cynaroides L. plantlets improves in vitro growth, net photosynthetic rate, and acclimatization. HortScience horts, 48(10), 1293-1297.

Wu, J.-H., Miller, S. A., Hall, H. K., & Mooney, P. A. (2009). Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell, Tissue and Organ Culture (PCTOC), 99(1), 17-25.

Xiao, Y., Niu, G., & Kozai, T. (2011). Development and application of photoautotrophic micropropagation plant system. Plant Cell, Tissue and Organ Culture (PCTOC), 105(2), 149-158.

Zeni, A. L. B., Albuquerque, C. A. C. d., Gonçalves, F., Latini, A., Tasca, C. I., Podestá, R., & Maraschin, M. (2013). Phytochemical profile, toxicity and antioxidant activity of Aloysia gratissima (Verbenaceae). Quimica Nova, 36(1), 69-73.

Ziska, L. H., Panicker, S., & Wojno, H. L. (2008). Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC.). Climatic Change, 91(3), 395.

Downloads

Published

11/09/2022

How to Cite

COELHO, A. D. .; LEITE, J. J. F. .; SANTOS, G. C.; ASSIS, R. M. A. de .; MARQUES, Érica A. .; CARVALHO, A. A. de; BERTOLUCCI, S. K. V. .; PINTO, J. E. B. P. . Different types of explants and natural ventilation systems influence the accumulation of dry weight and of total phenolic compounds in Aloysia gratissima (Verbenaceae) . Research, Society and Development, [S. l.], v. 11, n. 12, p. e203111234446, 2022. DOI: 10.33448/rsd-v11i12.34446. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34446. Acesso em: 26 apr. 2024.

Issue

Section

Agrarian and Biological Sciences