Energy flows and organic reserves of forage plants

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34782

Keywords:

Carbon; Grasses; Photosynthesis; Nitrogen.

Abstract

This review addressed the existing energy flows in the pasture ecosystem, as well as the use of organic reserves by forage grasses. The radiant energy is absorbed by the leaves and transformed into chemical energy by which the assimilated carbon is fixed. During the process of assimilation and fixation of C, photochemical, and biochemical processes are carried out, which are influenced by light. Several environmental factors can influence the ability of plants to respond to stimuli. In this sense, energy flows within the pasture system are in constant movement to maintain the forage plant. The direction of energy flow varies with the growth environment of the forage plant, since in addition to affecting the structural characteristics, the environmental factors exert control over the root system. In theory, organic reserves located in roots and stems play a crucial role in the growth of grazed plants, especially in the first days after defoliation. Therefore, it is important to encourage research involving the reserve organs and their accumulation patterns so that the results can assist in the development of sustainable grazing systems. 

References

Aranjuelo, I., Molero, G., Erice, G., Aldasoro, J., Arrese‐Igor, C., & Nogués, S. Effect of shoot removal on remobilization of carbon and nitrogen during regrowth of nitrogen‐fixing alfalfa. Physiologia plantarum, 153(1), 91-104, 2014. https://doi.org/10.1111/ppl.12222

Avice, J. C., Ourry, A., Lemaire, G., & Boucaud, J. Nitrogen and carbon flows estimated by 15N and 13C pulse-chase labeling during regrowth of alfalfa. Plant Physiology, 112(1), 281-290, 1996. https://doi.org/10.1104/pp.112.1.281

Avice, J. C., Ourry, A., Lemaire, G., Volenec, J. J., & Boucaud, J. Root protein and vegetative storage protein are key organic nutrients alfafa shoot regrowth. Crop Science, 37(4), 1187-1193, 1997. https://doi.org/10.2135/cropsci1997.0011183X003700040027x

Chicahuala, M. S., Steinaker, D. F., & Demaría, M. R. Respuestas fenológicas de gramíneas C3 y C4 a variaciones interanuales de precipitación y temperatura. Ecología Austral, 28(2), 455-466, 2018. https://doi.org/10.25260/EA.18.28.2.0.658

Costa N. L., Deschamps, C., & Moraes, A. Pasture canopy, photosynthesis and grass forage yield. PUBVET, 6(21), 1387-1392, 2012.

Costa, C. D. S., Rodrigues, R. C., Santos, F. N. D. S., Araújo, R. A., Sousa, G. O. C., Lima, J. R. L., Nunes, D. R., & Rodrigues, M. M. Structural characteristics and chemical composition of andropogon grass pasture managed under different defoliation intensities and rest periods. Revista Brasileira de Saúde e Produção Animal, 18(4), 492-504, 2017. https://doi.org/10.1590/s1519-99402017000400001

Costa, D. F. A., Quigley, S. P., Isherwood, P., McLennan, S. R., Sun, X. Q., Gibbs, S. J., & Poppi, D. P. Small differences in biohydrogenation resulted from the similar retention times of fluid in the rumen of cattle grazing wet season C3 and C4 forage species. Animal Feed Science and Technology, 253, 101-112, 2019. https://doi.org/10.1016/j.anifeedsci.2019.05.010

Costa, N. L., Magalhães, J. A., Bendahan, A. B., Rodrigues, A. N. A., Rodrigues, B. H. N., & Santos, F. J. S. (2020a). Produtividade de forragem e morfogênese de Brachiaria ruziziensis sob níveis de nitrogênio. Research, Society and Development, 9(1), e10911499. http://dx.doi.org/10.33448/rsd-v9i1.1499

Costa, N. L., Rodrigues, A. N. A., Magalhães, J. A., Bendahan, A. B., Rodrigues, B. H. N., & Santos, F. J. S. (2020b). Rendimento de forragem, composição química e morfogênese de Brachiaria brizantha cv. Piatã sob períodos de rebrota. Research, Society and Development, 9(1), e133911801. http://dx.doi.org/10.33448/rsd-v9i1.1801

Dierking, R. M., Allen, D. J., Cunningham, S. M., Brouder, S. M., & Volenec, J. J. Nitrogen reserve pools in two Miscanthus× giganteus genotypes under contrasting N managements. Frontiers in plant science, v. 8, 2017. https://doi.org/10.3389/fpls.2017.01618

Durand, J. L., Varlet-Grancher, C., Lemaire, G., Gastal, F., & Moulia, B. Carbon partitioning in forage crops. Acta biotheoretica, 39(3-4,) 213-224, 1991. https://doi.org/10.1007/BF00114177

Euclides, V. P. B., Carpejani, G. C., Montagner, D. B., Nascimento Junior, D., Barbosa, R. A., & Difante, G. S. Maintaining post‐grazing sward height of Panicum maximum (cv. Mombaça) at 50 cm led to higher animal performance compared with post‐grazing height of 30 cm. Grass and Forage Science, 73(1), 174-182, 2017. https://doi.org/10.1111/gfs.12292

Ferro, M. M., Zanine, A. M., Ferreira, D. J., Souza, A. L., & Geron, L. J. V. Organic Reserves in tropical Grasses under Grazing. American Journal of Plant Sciences, 6(14), 2329, 2015. http://dx.doi.org/10.4236/ajps.2015.614236

Gastal, F., & Lemaire, G. Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: Review of the underlying ecophysiological processes. Agriculture, 5(4), 1146-1171, 2015. https://doi.org/10.3390/agriculture5041146

Gómez, S., Guenni, O., & Bravo de Guenni, L. Growth, leaf photosynthesis and canopy light use efficiency under differing irradiance and soil N supplies in the forage grass Brachiaria decumbens Stapf. Grass and Forage Science, 68(3), 395-407, 2012. https://doi.org/10.1111/gfs.12002

Graminho, L. A., Rocha, M. G., Pötter, L., Rosa, A. T. N., Bergoli, T. L., & Machado, M. Defoliation patterns and tillering dynamics in Italian ryegrass under different herbage allowances. Acta Scientiarum. Animal Sciences, 36(4), 349-356, 2014. https://doi.org/10.4025/actascianimsci.v36i4.24021

Irving, L. J. Carbon assimilation, biomass partitioning and productivity in grasses. Agriculture, 5(4), 1116-1134, 2015. https://doi.org/10.3390/agriculture5041116

Islam, M. R., Garcia, S. C., Horadagoda, A., Kerrisk, K. L., & Clark, C. E. Management strategies for forage rape (Brassica napus L. cv Goliath): Impact on dry‐matter yield, plant reserves, morphology and nutritive value. Grass and Forage Science, 75(1), 96-110, 2020. https://doi.org/10.1111/gfs.12462

Lemaire, G., & Chapman, D. Tissue flows in grazed plant communities. In: Hodgson, J., & Illius, W. (Ed.) The ecology and management of grazing systems. London: CAB International, 1996. cap. 1, p. 3-36.

Liu, Y., Yang, X., Tian, D., Cong, R., Zhang, X., Pan, Q., & Shi, Z. Resource reallocation of two grass species during regrowth after defoliation. Frontiers in Plant Science, v. 9, p. 1767, 2018. https://doi.org/10.3389/fpls.2018.01767

Louahlia, S., Laine, P., MacDuff, J. H., Ourry, A., Humphreys, M., & Boucaud, J. Interactions between reserve mobilization and regulation of nitrate uptake during regrowth of Lolium perenne L.: putative roles of amino acids and carbohydrates. Botany, 86(10), 1101-1110, 2008. https://doi.org/10.1139/B08-066

Lu, X., Ji, S., Hou, C., Qu, H., Li, P., & Shen, Y. Impact of root C and N reserves on shoot regrowth of defoliated alfalfa cultivars differing in fall dormancy. Grassland Science, 64(2), 83-90, 2018. https://doi.org/10.1111/grs.12190

Matthew, C. & Kemball, W. D. Allocation of carbon-14 to roots of different ages in perennial ryegrass (Lolium perenne L.). In: International Grassland Congress,18, 1997, Calgary, Proceedings.... Winnipeg/Saskaton: CFC/CSA/CSAS, 1997. p. 8–17.

Meuriot, F., Morvan-Bertrand, A., Noiraud-Romy, N., Decau, M. L., Escobar-Gutiérrez, A. J., Gastal, F., & Prud’homme, M. P. Short-term effects of defoliation intensity on sugar remobilization and N fluxes in ryegrass. Journal of Experimental Botany, 69(16), 3975-3986, 2018. https://doi.org/10.1093/jxb/ery211

Mitchell, M. L., Clark, S. G., Butler, K. L., Nie, Z., Burnett, V. F., Meyer, R., Zollinger, R., & Seymour, G. R. Harvest interval affects lucerne (Medicago sativa L.) taproot total yield, starch, nitrogen and water‐soluble carbohydrates. Journal of Agronomy and Crop Science, 2020. https://doi.org/10.1111/jac.12397

Moscoso, C. J., & Balocchi, O. Water-soluble carbohydrate and nitrogen concentrations after defoliation in perennial ryegrasses (Lolium perenne L.) in spring. Agrosur, v. 44, p. 23-29, 2016. https://doi.org/10.4206/agrosur.2016.v44n3-02

Nelson, C. J. & Moore, K. J. Grass Morphology. In: Moore, K. J., Collins, M., Nelson, C. J., & Redfearn, D. D. (Ed.). Forage: The Science Of Grassland Agriculture. Croydon: Willey Blackwell, 2020. cap. 2, p. 23-50.

Ould-Ahmed, M., Decau, M. L., Morvan-Bertrand, A., Prud’homme, M. P., Lafrenière, C., & Drouin, P. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.). Journal of plant physiology, 171(16), 1479-1490, 2014. https://doi.org/10.1016/j.jplph.2014.07.007

Paraiso, I. G., Silva, D. S., Carvalho, A. P. S., Sollenberger, L. E., Pereira, D. H., Euclides, V. P., & Pedreira, B. C. Herbage accumulation, nutritive value, and organic reserves of continuously stocked ‘Ipyporã’and ‘Mulato II’ brachiaria grasses. Crop Science, 59(6), 2903-2914, 2019. https://doi.org/10.2135/cropsci2019.06.0399

Pedreira, C. G., Silva, V. J., Pedreira, B. C., & Sollenberger, L. E. Herbage accumulation and organic reserves of palisadegrass in response to grazing management based on canopy targets. Crop Science, 57(4), 2283-2293, 2017. https://doi.org/10.2135/cropsci2016.11.0957

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30-50, 2012. https://doi.org/10.1111/j.1469-8137.2011.03952.x

Robin, A. H. K., Irving, L. J., Khaembah, E. N., & Matthew, C. Modelling Carbon Fluxes as an Aid to Understanding Perennial Ryegrass (Lolium perenne) Root Dynamics. Agronomy, 8(11), 236, 2018. https://doi.org/10.3390/agronomy8110236

Roche, J., Turnbull, M. H., Guo, Q., Novák, O., Späth, J., Gieseg, S. P., Jameson, P. E., & Love, J. Coordinated nitrogen and carbon remobilization for nitrate assimilation in leaf, sheath and root and associated cytokinin signals during early regrowth of Lolium perenne. Annals of botany, 119(8), 1353-1364, 2017. https://doi.org/10.1093/aob/mcx014

Sangoi, L., Schmitt, A., Silva, P. R. F. D., Vargas, V. P., Zoldan, S. R., Viera, J., Souza, C. A., Picoli Júnior, G. J., Bianchet, P. Tillering as a trait to mitigate damages caused to maize by the main stem defoliation. Pesquisa Agropecuária Brasileira, 47(11), 1605-1612, 2012. https://doi.org/10.1590/S0100-204X2012001100007

Sheard, R. W. Organic reserves and plant regrowth. In: Butler, G. W., & Bailey, R. W. (Ed.). Chemistry and biochemistry of herbage. London: Academic Press, 1973. cap.25, 353-377.

Silva, S. C., Pereira, L. E. T., Sbrissia, A. F., & Hernandez-Garay, A. Carbon and nitrogen reserves in marandu palisadegrass subjected to intensities of continuous stocking management. The Journal of Agricultural Science, 153(8), 1449-1463, 2014. https://doi.org/10.1017/S0021859614001130

Silva, S. C., Sbrissia, A. F., & Pereira, L. E. T. Ecophysiology of C4 forage grasses—understanding plant growth for optimising their use and management. Agriculture, 5(3), 598-625, 2015. https://doi.org/10.3390/agriculture5030598

Silva, V. J., Pedreira, C. G., Sollenberger, L. E., Silva, L. S., Yasuoka, J. I., & Almeida, I. C. Carbon assimilation, herbage plant‐part accumulation, and organic reserves of grazed ‘Mulato II’ brachiariagrass pastures. Crop Science, 56(5), 2853-2860, 2016. https://doi.org/10.2135/cropsci2016.03.0148

Soares Filho, C. V., Cecato, U., Ribeiro, O. L., Roma, C. F. C., Jobim, C. C., Beloni, T., & Perri, S. H. V. Root system and root and stem base organic reserves of pasture Tanzania grass fertilizer with nitrogen under grazing. Semina: Ciências Agrárias, p. 2415-2426, 2013. http://dx.doi.org/10.5433/1679-0359.2013v34n5p2415

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. Fisiologia e Desenvolvimento Vegetal. (6ª ed.): Artmed, 2017. 848p.

Thornley, J. H. M. A balanced quantitative model for root: shoot ratios in vegetative plants. Annals of Botany, 36(2), 431-441, 1972. https://doi.org/10.1093/oxfordjournals.aob.a084602

Volenec, J. J., & Nelson, C. J. Carbon Metabolism in Forage Plants. In: Moore, K. J., Collins, M., Nelson, C. J., & Redfearn, D. D. (Ed.). Forage: The Science Of Grassland Agriculture. Croydon: Willey Blackwell, 2020. cap. 4, p. 65-84.

Volenec, J. J., Ourry, A., & Joern, B. C. A role for nitrogen reserves in forage regrowth and stress tolerance. Physiologia Plantarum, 97(1), 185-193, 1996. https://doi.org/10.1111/j.1399-3054.1996.tb00496.x

Xing, Y., Jiang, W., He, X., Fiaz, S., Ahmad, S., Lei, X., Wang, W., Wang, Y., & Wang, X. A review of nitrogen translocation and nitrogen-use efficiency. Journal of Plant Nutrition, 42(19), 2624-2641, 2019. https://doi.org/10.1080/01904167.2019.1656247

Yang, H., Wang, Z., & Zhang, X. Changes in the content and allocation of carbon and nitrogen during forage regrowth. In: International Grassland Congress, 22, 2013, Sydney. Proceedings... Sydney: CFC/CSA/CSAS, 2013. p.15-19.

Downloads

Published

24/09/2022

How to Cite

CRUZ, N. T. .; JARDIM, R. R. .; SOUSA, B. M. de L. .; SEIXAS, A. A. .; FRIES, D. D. .; PIRES, A. J. V. .; DIAS, D. L. S. .; BONOMO, P. .; RAMOS, B. L. P. .; ALCANTARA, W. Q. de .; SANTOS, A. P. da S. dos . Energy flows and organic reserves of forage plants. Research, Society and Development, [S. l.], v. 11, n. 12, p. e549111234782, 2022. DOI: 10.33448/rsd-v11i12.34782. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34782. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences