Evaluation of polymers for upper limb orthosis through computer simulation

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34937

Keywords:

Materials selection; Merit index; Computer simulation; Orthopedic appliance; Orthosis.

Abstract

Material selection is one of the most relevant and challenging steps in engineering projects. In this study, we focused on selecting polymers with low density and stiffness for upper limb orthoses that help in the recovery of patients who have undergone cerebrovascular accident (CVA). CES EduPack 2011 software was used to compare the density and Young's modulus of different polymers. The merit index aided in the classification of these materials, which were applied to 3D orthosis models for computer simulations in FreeCAD 0.19.4 software. Using the simulation data, a decision matrix was developed using the Pahl & Beitz method to classify polymers according to the weighted property index. The decision matrix using the simulated and merit index data indicated polyethylene terephthalate (PET) and polylactic acid (PLA) as the best polymers for upper limb orthoses. The weighted property index values were 127.34 and 123.19, respectively. It is noteworthy that polyethylene terephthalate glycol (PETG - adaptation of PET) is an alternative to 3D printing filaments, and PLA is one of the main filaments.

References

Ashby, M. F. (2011). Materials Selection in Mechanical Design. Burlington: Elsevier Butterworth-Heinemann.

Baronio, G., Harran, S., & Signoroni, A. (2016). A critical analysis of a hand orthosis reverse engineering and 3D printing process. Applied bionics and biomechanics, 2016. https://doi.org/10.1155/2016/8347478

Besko, M., Bilyk, C., & Sieben, P. G. (2017). Aspectos técnicos e nocivos dos principais filamentos usados em impressão 3D. Gestão, Tecnologia e Inovação. Revista eletrônica dos Cursos de Engenharia, 1(3), 9-18.

Carvalho, J. A. (2013). Órteses: um recurso terapêutico complementar. Barueri: Manole.

Dantas, V. D. A. (2019). Avaliação do comportamento mecânico através de caracterização experimental e computacional do ácido polilático (PLA) em dois diferentes modelos de órteses ortopédicas. Dissertação de mestrado. Universidade Federal Rural do Semiárido.

Driscoll, M. (2019). The impact of the finite element method on medical device design. Journal of Medical and Biological Engineering, 39(2), 171-172. https://doi.org/10.1007/s40846-018-0428-4

Ferrante, M., Santos, S. F., & De Castro, J. F. R. (2000). Materials selection as an interdisciplinary technical activity: basic methodology and case studies. Materials Research, 3, 1-9. https://doi.org/10.1590/S1516-14392000000200002

Findik, F., & Turan, K. (2012). Materials selection for lighter wagon design with a weighted property index method. Materials & Design, 37, 470-477. https://doi.org/10.1016/j.matdes.2012.01.016

Fish, J. & Belytschko, T. (2009). Um Primeiro Curso em Elementos Finitos. São Paulo: LTC.

Garros, D. D. S. C., Gagliardi, R. J., & Guzzo, R. A. R. (2010). Evaluation of performance and personal satisfaction of the patient with spastic hand after using a volar dorsal orthosis. Arquivos de Neuro-Psiquiatria, 68, 385-389. https://doi.org/10.1590/S0004-282X2010000300011

Lanzotti, A., Martorelli, M., Maietta, S., Gerbino, S., Penta, F., & Gloria, A. (2019). A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Procedia Cirp, 79, 143-146. https://doi.org/10.1016/j.procir.2019.02.030

Mikula, K., Skrzypczak, D., Izydorczyk, G., Warchoł, J., Moustakas, K., Chojnacka, K., & Witek-Krowiak, A. (2021). 3D printing filament as a second life of waste plastics—A review. Environmental Science and Pollution Research, 28(10), 12321-12333. https://doi.org/10.1016/j.procir.2019.02.030

Pahl, G., Beitz, W., Feldhusen, J. & Grote, K. H. (2007). Engineering Design: A Systematic Approach. London: Springer.

Poier, P. H., Weigert, M. C., Rosenmann, G. C., de Carvalho, M. G. R., Ulbricht, L., & Foggiatto, J. A. (2021). The development of low-cost wrist, hand, and finger orthosis for children with cerebral palsy using additive manufacturing. Research on Biomedical Engineering, 37(3), 445-453. https://doi.org/10.1007/s42600-021-00157-0

Poier, P. H., Arce, R. P., Rosenmann, G. C., Carvalho, M. G. R., Ulbricht, L., & Foggiatto, J. A. (2021). Development of modular wrist, hand and finger orthesis by additive manufacturing. Research, Society and Development, 10(15).

Radomski, M. V. & Latham, C. A. T. (2013). Terapia Ocupacional para Disfunções Físicas. São Paulo: Santos.

Tiwari, A., Gupta, V. K., Haldkar, R. K., & Parinov, I. A. (2022). Biomechanical Analysis of Patient-Specific Temporomandibular Joint Implant and Comparison with Natural Intact Jaw Bone Using Finite Element Method. Applied Sciences, 12(6), 3003. https://doi.org/10.3390/app12063003

Santana, L., Alves, J. L., Sabino Netto, A. D. C., & Merlini, C. (2018). Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, química e mecânica. Matéria, 23. https://doi.org/10.1590/S1517-707620180004.0601

Shih, A., Park, D. W., Yang, Y. Y. D., Chisena, R., & Wu, D. (2017). Cloud-based design and additive manufacturing of custom orthoses. Procedia Cirp, 63, 156-160. http://doi.org/10.1016/j.procir.2017.03.355

Silva, A. F., de Oliveira, L. B., Silva, L. H. D. S., Meireles, H. R., & Souto, C. D. R. (2017). Desenvolvimento de uma órtese de baixo custo para portadores de paraplegia. In 14º Congresso da Sociedade Latino Americana de Biomateriais, Orgãos Artificiais e Engenharia de Tecidos - SLABO, 18-26.

Thiré, R. M. S. M., Pinto, M. O. M. & Maia, M. C. (2019). Estudo da biocompatibilidade in vivo de arcabouço para poli(ácido lático) (PLA) fabricados por impressão 3D para aplicações em Engenharia Tecidual. In: Neto BRS, editor. A produção do conhecimento nas Ciências da Saúde 5. Ponta Grossa: Atena Editora.

Downloads

Published

25/09/2022

How to Cite

OLIVEIRA, T.; OLIVEIRA, M. de; OLIVEIRA, L.; SILVA, L. Evaluation of polymers for upper limb orthosis through computer simulation. Research, Society and Development, [S. l.], v. 11, n. 12, p. e585111234937, 2022. DOI: 10.33448/rsd-v11i12.34937. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34937. Acesso em: 18 nov. 2024.

Issue

Section

Engineerings