Characterization of genes related to bacteriophages in Enterobacter aerogenes from infection in hospital patient in Recife-PE, Brazil
DOI:
https://doi.org/10.33448/rsd-v11i12.35004Keywords:
Phage; Genome; Control; Enterobacteria.Abstract
Bacteriophages (phages) are viruses which infect prokaryotes, their applicability and recognition as a mechanism against bacterial species are getting importance in the medical science. The present study aimed to recognize genes related to bacteriophages in samples of Enterobacter aerogenes, as a possible resource for controlling this pathogen. The used genome belonged to an E. aerogenes infection isolated from the Intensive Care Unit of a Public Hospital in Recife-PE and submitted to genomic sequencing. After prediction and gene annotation, there was the identification of two genes related to bacteriophages, through manual and precise analysis and comparison with the genes of the colonization isolated. Regarding the results obtained, several genes were found in the infection isolated (chromosomal and plasmid DNA) with important properties. When compared with the genes of the colonization isolated, it was possible to observe a proximity and similarity between them, differing in only one single and exclusive gene in the chromosomal DNA from infection isolated. Therefore, it was possible to show a variety of genes related to bacteriophages in the analyzed isolated, which exposes the importance of phage therapy as an alternative to control pathogenic bacteria.
References
Alam, T. I., Alam, T. I., Draper, B., Kondabagil, K., Rentas, F. J., Ghosh-Kumar, M., Sun, S., Rossmann, M. G., & Rao, V. B. (2008). The headful packaging nuclease of bacteriophage T4. Molecular Microbiology. 69, (5) 1180-1190.
Biswas, T., Aihara, H., Radman-Livaja, M., Filman, D., Landy, A., & Ellenberger, T. (2005). A structural basis for allosteric control of DNA recombination by λ integrasse. Nature. 435, 1059-1066.
Bruttin, A., & Brussow, H. A. (2005). Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother. 49, (7) 2874-2878.
Chang, R. Y. K., Morales, S., Okamoto, Y., & Chan, H-K. (2020). Topical application of bacteriophages for treatment of wound infections. Transl Res. 220, 153e66.
Crispim, J. S., Dias, R. S., Vidigal, P. M. P., de Sousa, M. P., da Silva, C. C., Santana, M. F., & de Paula, S. O. (2018). Screening and characterization of prophages in Desulfovibrio genomes. Scientific Reports. 8, (1) 1-10.
Dedrick, R. M., Guerrero-Bustamante, C. A., Garlena, R. A., Russell, D. A., Ford, K., Harris, K., Gilmour, K.C ., Soothill, J., Jacobs-Sera, D., Schooley, R. T., Hatfull, G .F., & Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessos. Nature Medicine. 25, 730-733.
Duyne, G. D. V. (2005). Lambda Integrase: Armed for Recombination. Current Biology. 15, (17) 1-3.
García, P. A., Martınez, B., J. M. Obeso, J. M., & Rodrıguez, A. (2008). Bacteriophages and their application in food safety. Lett App Microbiol. 47, 479-485.
Gogokhia, L., & Round JL. (2021). Immune-bacteriophage interactions in inflammatory bowel diseases. Curr Opin Virol. 49, 30-35.
Hudson, J. A., Billington, C., Carey-Smith, G., & Greening, G. (2005). Bacteriophages as biocontrol agents in food. J Food Prot. 68, 426-437.
Inagaki, M. (2003). Different contributions of the outer and inner R-core residues of lipopolysaccharide to the recognition by spike H and G proteins of bacteriophage φX174. FEMS Microbiology Letters, 226, 221-227.
Jamal, M., Bukhari, S.M.A.U.S., Andleeb, S., Ali, M., Raza, S., Nawaz, M.A., Hussain, T., Rahman, S. U., & Shah, S. S. A. (2019). Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol. 59, (2) 123-133. Erratum in: J Basic Microbiol. 2019 59, (9) 960.
Jofre, J., & Muniesa, M. (2020). Bacteriophage Isolation and Characterization: Phages of Escherichia coli. Methods Mol Biol. 2075, 61-79.
Jurač, K., Nabergoj, D., & Podgornik, A. (2019). Bacteriophage production processes. Appl Microbiol Biotechnol. 103, (2) 685-694.
Krylov, V. N., Bourkaltseva, M. V., & Pleteneva, E. A. (2019). Bacteriophage's Dualism in Therapy. Trends Microbiol. 27, (7) 566-567.
Li, E., Wei, X., Ma, Y., Yin, Z., Li, H., Lin, W., Wang, X., Li, C., Shen, Z., Zhao, R., Yang, H., Jiang, A., Yang, W., Yuan, J., & Zhao, X. (2016). Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes. Sci Rep. 6, (28338) 1-9.
Ling, H., Lou, X., Luo, Q., He, Z., Sun, M., & Sun, J. (2022). Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era,
Acta Pharmaceutica Sinica B.
Maciejewska, B., Roszniowski, B., Espaillat, A., Kęsik-Szeloch, A., Majkowska-Skrobek, G., Kropinski, A. M., Briers, Y., Cava, F., Lavigne, R., & Drulis-Kawa, Z. (2016). Klebsiella phages representing a novel clade of viruses with na unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol. 101, (2) 673-684.
Markowitz V M: Biological data management in a dataspace framework: biological data management and technology center. Philadelphia: Lawrence Berkeley National Laboratory, 2006.
Maszewska, A., & Różalski, A. (2019). Isolation and Purification of Proteus mirabilis Bacteriophage. Methods Mol Biol. 2021, 231-240.
Mitchell, M. S. (2002). Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucleic Acids Research, 30, 4009-4021.
Moussa, S. H., Kuznetsov, V., Tran, T. A., Sacchettini, J. C., & Young, R. (2012). Protein determinants of phage T4 lysis inhibition. Protein Science. 21, 571-582.
Moye, Z. D., Woolston, J., & Sulakvelidze, A. (2018). Bacteriophage Applications for Food Production and Processing. Viruses. 19, 10(4) 205.
Owen, S. V., Wenner, N., Canals, R., Makumi, A., Hammarlöf, D. L., Gordon, M. A., Aertsen, A., Feasey, N. A., & Hinton, J. C. (2017). Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1. Front. Microbiol. 23, (8) 235.
Parmar, K. M., Dafale, N. A., Tikariha, H., & Purohit, H. J. (2018). Genomic characterization of key bacteriophages to formulate the potential biocontrol agent to combat enteric pathogenic bacteria. Arch Microbiol. 200, (4) 611-622.
Resende, D. M., Rezende, A. M., Oliveira, N. J. Batista, I. C. A., Corrêa-Oliveira, R., Reis, A .B., & Ruiz, J. C. (2012). An assessment on epitope prediction methods for protozoa genomes. BMC Bioinformatics 13, 309.
Rossi, L. P. R., & Almeida, R. C. C. (2010). Bacteriófagos para controle de bactérias patogênicas em alimentos. Rev. Inst. Adolfo Lutz. São Paulo, 69, (2) 151-156.
Sen, K. D., Ercan, U. K., Bakay, E., Topalo_glu N., & Rosenholm, J. M. (2020). Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic Era. Adv Funct Mater. 30, 1908783.
SIllankorva, S. M., Oliveira, H., & Azeredo, J. (2012). Bacteriophages and Their Role in Food Safety. Journal of Microbiology. 201, 1-13.
Sun, S., Kondabagil, K., Draper, B., Alam, T. I., Bowman, V. D., Zhang, Z., Hegde, S., Fokine, A., Rossmann, M. G., & Rao, V. B. (2008). The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces. Cell. 135, 1251-1262.
Tlapák, H., Köppen, K., Rydzewski, K., Grunow, R., & Heuner, K. (2018). Front Cell Infect Microbiol. 14, (8) 75.
Uchiyama, A., & Fane, B. A. (2005). Identification of an Interacting Coat-External Scaffolding Protein Domain Required for both the Initiation of φX174 Procapsid Morphogenesis and the Completion of DNA Packaging. J. Virol. 79, (11) 6751-6756.
Wirjon, I. A., Lau, N. S., & Arip, Y. M. (2017). Complete Genome Sequence of Proteus mirabilis Phage pPM_01 Isolated from Raw Sewage. Intervirology. 59, (5-6) 243-253.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Júlio Ricardo Macedo Silva; Ellen Carolyna Silva Bezerra; Jefferson Cavalcante de Lima; Matheus dos Santos do Nascimento Carvalho; Antônio Mauro Rezende; Thiago José Matos Rocha; Juliane Cabral Silva; Ana Catarina Souza Lopes; Adriane Borges Cabral
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.