Specific cutting energy of Eucalyptus wood with different densities

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35431

Keywords:

Mechanical processing; Lumber; Production engineering.

Abstract

The aim of the study was to evaluate how the specific cutting energy is influenced by the variation of the wood basic density in Eucalyptus spp. clones. Five clones, 10 years old, were used in the study: three hybrids of Eucalyptus grandis x Eucalyptus urophylla, one of Eucalyptus grandis and one of Eucalyptus urophylla. From each clone, five trees were cut down and divided into 2.0 m long logs. In two axial regions of the trunk (from 2.5 to 4.5 m and from 4.5 m to 6.5 m) the logs were cut into boards and reduced to specimens with dimensions of 660 x 110 x 21 mm. The basic density was determined by the hydrostatic method in two opposite wedges obtained from discs removed at 2.5, 4.5 and 6.5 m from the total height of the tree. To analyze the specific cutting energy, 10 specimens were selected for each axial region and clone. A frequency inverter was used to monitor the cutting process. Analysis of variance was applied to evaluate the specific cutting energy and the wood basic density. The results obtained appointed a significant difference between the woods of the clones for basic density and specific cutting energy. For the wood in the different axial regions, only the specific cutting energy was significant. Clone 1 required less specific cutting energy, as it was influenced by the lower basic density. In the 2.5 to 4.5 m axial region, a higher specific cutting energy was observed even with lower basic density.

References

Andrade, A. C. A., Guedes, T. O., Oliveira, M. B., & Silva, J. R. M. (2018). Analysis of specific cutting energy in planing of native species of Brazil for solid product purpose. Australian Journal of Basic and Applied Sciences, 12 (3), 27-30.

Andrade, A. C. A., Santos, R. L., Santos, C., Fonseca, A. D., Santana Neto, A. M., & Cardoso Júnior, A. A. (2019). Umidade da madeira como fator de influência no processamento. Agropecuária Científica e no Semiárido, 15(3), 243-247.

Andrade, A. C. A., Brito, T. R., Silva, J. R. M., Ferreira, S. C., Cardoso Junior, A. A., & Lima, J. T. (2022). Influence of basic wood density on the specific cutting energy. Research, Society and Development, 11(7), e13511729674.

Associação Brasileira de Normas Técnicas, ABNT. (2003). NBR 11941: Madeira – Determinação da densidade básica. Rio de Janeiro.

Axelsson, B., Lundberg, S., & Grönlund, A. (1993). Studies of the main cutting force at and near a cutting edge. Holz als Roh- und Werkstoff ,51(1), 43-48.

Batista, C. D., Klitzke, R. J., & Santos, C. V. T. (2010). Densidade básica e retratibilidade da madeira de clones de três espécies de Eucalyptus. Ciência Florestal, 20(4), 665-674.

Brown, N. C., Bethel, J. S. (1975). La indústria maderera. Limusa.

Carvalho, A. M., Silva, B. T. B., & Latorraca, J. V. F. (2010). Avaliação da usinagem e caracterização das propriedades físicas da madeira de mogno africano (Khaya ivorensis A. Chev.). Cerne, 16, 106-114.

Csanády, E., Kovács, Z., Magoss, E., & Ratnasingam, J. (2019). Furniture Production Processes: theory to practice. In: Csanády, E., Kovács, Z., Magoss, E., & Ratnasingam, J. (Eds.), Optimum Design and Manufacture Of Wood Products (pp. 367-421), Springer International Publishing.

Chuchala, D., Orlowski, K., Pauliny, D., Sandak, A., & Sandak, J. (2013). Is it right to predict cutting forces on the basis of wood density? In: Proceedings of the 21st International Wood Machining Seminar. 4–7 August 2013, Tsukuba, Japan. pp. 37- 45.

Cristóvão, L., Broman, O., Gronlund, A., Ekevad, M., & Sitoe, R. (2012). Main cutting force models for two species of tropical wood. Wood Material Science & Engineering, 7(3), 143-149.

Delatorre, F. M., Cupertino, G. F. M., Santos Júnior, A. J., Silva, A. M., Dias Júnior, A. F., & Carvalho, A. M. (2020). Comportamento da madeira de Ingá (Inga edulis Mart) frente a ensaios de usinagem. Research, Society and Development, 9(8), e352985119.

Evangelista, W. V., Silva, J. C., Della Lucia, R. M., Lobo, L. M., & Souza, M. O. A. (2010). Propriedades físico-mecânicas da madeira de Eucalyptus urophylla S. T. Blake no sentido radial e longitudinal. Ciência da Madeira, 1(2), 1-19.

Eyma, F., Meausoone, P. J., & Martin, P. (2004). Strains and cutting forces involved in the solid wood rotating cutting process. Journal of Materials Processing Technology, 148, 220-225.

Goli, G., Fioravanti, M., Marchal, R., & Uzielli, L. (2009). Up-milling and down-milling wood with different grain orientations – theoretical background and general appearance of the chips. Eur J Wood Prod 67(3), 257–263.

Gorczyca, F. E. (1987). Application of metal cutting theory. Industrial Press.

Guedes, T. O., Silva, J. R. M., Hein, P. R. G., & Ferreira, S. C. (2020). Cutting energy required during the mechanical processing of wood species at diferente drying stages. Maderas. Ciencia y Tecnología, 22 (4), 477-482.

Koch, P. (1964). Wood Machining Processes. Finland Institute for Technical Research. Ronald Press, New York.

Lopes, C. S. D., Nolasco, A. M., Tomazello Filho, M., Dias, C. T. S., & Pansini, A. (2011). Estudo da densidade básica e da variação dimensional da madeira de três espécies de eucalipto para a indústria moveleira. Ciência Florestal, 21(2), 315-322.

Melo, L. E. L., Silva, J. R. M., Napoli, A., Lima, J. T., Trugilho, P. F., & Nascimento, D. F. R. (2016). Study of the physical properties of Corymbia citriodora wood for the prediction of specific cutting force. Scientia Forestalis 44 (111), 701-708.

Neri, A. C., Goncalves, R., & Hernandez, R. E. (2000). Forças de corte ortogonal 90-90 em três espécies de madeira de eucalipto do estado de São Paulo. Revista Brasileira de Engenharia Agrícola e Ambiental, 4(2), 275-280.

Paul, L., Babu, J., & Davim, J. P. (2019). Non-conventional Micro-machining Processes. Materials Forming, Machining And Tribology, 109-139.

Porankiewicz, B., Iskra, P., Jóźwiak, K., Tanaka, C., & Zborowski,W. (2008). High speed steel tool wear after wood milling in the presence of high temperature tribochemical reactions. BioResources, 3 (3), 838-858.

Rodrigues, A. R., & Coelho, R. T. (2007). Influence of the tool edge geometry on specific cutting energy at high-speed cutting. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 29(3), 279-283.

Souza, E. M., Silva, J. R. M., Lima, J. T., Napoli, A., Raad, T., J., & Gontijo, T. G. (2011). Energia específica de corte em serra circular para os clones de Eucalyptus VM01 e MN463. Cerne, 17(1), 109-115.

Taques, A. C., & Arruda, T. P. M. (2016). Usinagem da madeira de angelim pedra (Hymenolobium petraeum). Revista de Ciências Agroambientais, 14 (1), 97-103.

WEG. (2008). Inversores de frequência: CFW-08. Florianópolis. http://www.weg.net/files/products/4-2183.pdf.

Downloads

Published

08/10/2022

How to Cite

FRANÇA, M. C. .; ANDRADE, A. C. de A. .; BRITO, T. R. .; ROCHA, M. P. da .; SILVA , J. R. M. da .; KLITZKE, R. J. . Specific cutting energy of Eucalyptus wood with different densities . Research, Society and Development, [S. l.], v. 11, n. 13, p. e319111335431, 2022. DOI: 10.33448/rsd-v11i13.35431. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35431. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences