Evaluation of the acoustic performance of recycled-PET fiber and vermiculite board in the light steel framing construction system
DOI:
https://doi.org/10.33448/rsd-v11i13.35630Keywords:
Industrialized construction; Acoustic comfort; Sustainable materials.Abstract
The search for more rationalized and sustainable constructions such as the Light Steel Framing (LSF) system has been increasing worldwide along with the need for a better acoustic performance of the system, in the same way that the demand for research on recycled materials or materials with low environmental impact increases. Thus, the objective of this research is to determine the sound absorption coefficient of a multilayer system formed by recycled-PET fiber and vermiculite board, to be used inside the walls of the LSF constructive system, through acoustic impedance tubes, according to ASTM E 1050 (2019). The tests were performed on 60 mm diameter samples of recycled-PET fiber and vermiculite board individually and samples with two layers, one of the combinations was with the vermiculite board in the innermost part of the tube and the recycled-PET fiber just ahead and the other way, inverting their positions. The results showed that the best performance for sound absorption for frequencies above 1000 Hz was the two-layer system, with vermiculite in the innermost part of the tube and recycled-PET fiber in the outermost part. The lowest performance was the recycled-PET fiber used in isolation, it did not present values greater than 0,5 in the entire frequency range analyzed. Therefore, it was possible to conclude that the use of the vermiculite board together with the recycled-PET fiber is an absorber system capable of optimizing the acoustic performance of the LSF system.
References
Associação Brasileira da Indústria do PET – ABIPET. Censo da reciclagem do PET no Brasil, 2019. (2020). http://www.abipet.org.br/index.html?method=mostrarDownloads&categoria.id=3
Associação Brasileira para a Qualidade Acústica - PROACÚSTICA. (2019). Manual ProAcústica de acústica básica.
ASTM (2019). ASTM E1050-19: Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system.
Bistafa, S. R. (2011). Acústica Aplicada ao Controle de Ruído. (2. ed.). São Paulo: Edgar Blücher.
CALDESUL. (2022). Placas de vermiculita. https://loja.caldesul.com.br/produtos/placas-de-vermiculita/
Carbajo, J., Esquerdo-Lloret, T. V., Ramis, J., Nadal-Gisbert, A. V., & Denia, F. D. (2015). Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Materiales de Construcción, 65(320), e072. https://doi.org/10.3989/mc.2015.01115.
Crasto, R. C. M., Freitas, A. M. S., & Santiago, A.K. (2012). Steel Framing: Arquitetura. (2. ed.). Rio de Janeiro: Instituto Brasileiro de Siderurgia - Centro Brasileiro da Construção em Aço (CBCA).
Del Rey, R., Alba, J., Ramis, J., & Sanchís, V. J. (2011). Nuevos materiales absorbentes acústicos obtenidos a partir de restos de botellas de plastico. Materiales de Construcción, 61, 547-558.
França, S. C. A., Braga, P. F. A., Couto, H. J. B & Gonçalves, C. C. (2016). Vermiculita, mais que um mineral termo acústico. In: Anais V Simpósio de Minerais Industriais do Nordeste. João Pessoa, Brasil.
Gerges, S. N. Y. (2000). Ruído: Fundamentos e controle. (2. ed.). Florianópolis.
Gerges, S. N.Y., & Balvedi, A. M. (1999). Numerical simulation and experimental tests of multilayer systems with porous materials. Applied Acoustics, 58 (4), 403-418.
Gomes, A. P., Souza, H. A. de, & Tribess, A. (2013). Impact of thermal bridging on the performance of buildings using light steel framing in Brazil. Applied Thermal Engineering, 84-89. 10.1016/j.applthermaleng.2012.11.015.
Gomes, C. V. S. (2015). Comportamento acústico de materiais absorvedores em multicamadas. Dissertação de mestrado, Universidade Federal de Minas Gerais, Belo Horizonte.
Klippel Filho, S., Labres, H. S., Pacheco, F., Christ, R., Pires, J. R., Heissler, R. F., & Oliveira, M. F. (2017). Uso da lã de PET para a absorção sonora e o isolamento acústico. Acústica e Vibrações, 49, 59–69.
Magalhães, M. D. C. (2013). Fundamentos de acústica estrutural. São Paulo: All Print.
Masini, H. F., & Teodoro, E. B. (2011). Medição automática do coeficiente de absorção acústica de materiais. Horizonte Científico, 5(2).
Oliveira, E. C., & Teodoro, E. B. (2005). Método para medição do coeficiente de absorção sonora. In: Anais 15º Simpósio do Programa de Pós-Graduação em Engenharia Mecânica da UFU. Uberlândia, Brasil.
Roque, E., Santos, P. & Pereira, A. (2019). Thermal and sound insulation of lightweight steel framed façade walls. Science and Technology for the Built Environment. 25. 156-176.
Rukavina, M., Skejic, D., Kralj, A., Ščapec, T., & Milovanović, B. (2022). Development of lightweight steel framed construction systems for nearly-zero energy buildings. Buildings. 12. 929. 10.3390/buildings12070929.
Santos, P. (2017). Energy efficiency of lightweight steel-Framed buildings. In (Ed.), Energy Efficient Buildings. IntechOpen.
Salvo, R. V, Mairink, M. T. F. Oliveira, E. C., & Teodoro, E. B. (2005). Construção De Um Tubo De Impedância. In: Anais 15o Posmec – Simpósio Do Programa De Pós-graduação em Engenharia Mecânica da UFU. Uberlândia, Brasil.
Shmuradko, V. T., Panteleenko, F. I., Reut, O. P., Panteleenko, E. F., & Kirshina, N. V. (2012). Composition, structure, and property formation of heat insulation fire- and heat-reflecting materials based on vermiculite for industrial power generation. Refractories and Industrial Ceramics, 53(4), 254+.
Silva, D. (2018). Fibras naturais como isolamento Acústico. Revista de Ciências Exatas e Tecnologia, 12 (12), 41-44.
SULMÓDULOS. (2021). Conheça os tipos de lãs mais eficientes para isolamento acústico em construções. https://www.sulmodulos.com.br/conheca-tipos-las-eficientes-isolamento-acustico-construcoes/
Terrados-Cepeda, F. & Lizana, J. (2020). Advanced lightweight steel floor towards high sound insulation and fire resistance. Journal of Constructional Steel Research. 169. 106023.
Venkatesan, V. & Ganesan, R. (2021). A General Study of Light Gauge Steel Building – Case Study. Journal of Physics: Conference Series. 1964.
Wang, W., Wang, J., Zhao, P., Ja, L. & Pan, G. (2020). Axial compressive experiments and structural behaviour estimation of CFS composite walls sprayed with LPM. Journal of Building Engineering. 30.
Way, A. G. J. & Couchman G. H. (2008). Acoustic detailing for steel construction. SCI Publication 372. Ascot, Steel Construction Institute.
World Health Organization. Regional Office for Europe. (2018). Environmental noise guidelines for the European Region. World Health Organization. Regional Office for Europe.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Janaina Costa Rezende; Edgar Vladimiro Mantilla Carrasco; Max de Castro Magalhães
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.