Reduction of NOx with NH3 over Mn/TiO2 catalysts: a systematic review of the literature
DOI:
https://doi.org/10.33448/rsd-v11i13.35737Keywords:
SCR; NOx; NH3; Mn/TiO2.Abstract
This systematic literature review article provides an overview of results on the efficiency of supported Mn/TiO2 catalysts containing transition metals for use in the selective catalytic reduction (SCR) of NOx with NH3. The Methodi Ordinatio systematic literature methodology was applied to rank the best articles on the topic, prioritizing the journal impact factor, the year of publication and the number of citations of the scientific article. The ordering of the data showed values of NOx reduction efficiencies of up to 97% for catalysts without doping and up to 100% for materials doped with nickel, which among the related doping metals showed the best efficiency in reducing NOx with NH3. Many works related to this theme are observed and it is verified in the systematic context that materials based on manganese oxide and titanium oxide doped with transition metals or rare earth are extremely promising and efficient in the SCR-NOx with NH3.
References
ANTT. (2018). Idade Média dos Veículos. Agência Nacional de Transporte Terrestres. Brasília. http://portal.antt.gov.br/index.php/content/view/20272/Idade_Media_dos_Veiculos.html.
Alves, L., Holz, L. I., Fernandes, C., Ribeirinha, P., Mendes, D., Fagg, D. P., & Mendes, A. (2021). A comprehensive review of NOx and N2O mitigation from industrial streams. Renewable and Sustainable Energy Reviews. 111916, doi.org/10.1016/j.rser.2021.111916
Borillo, G. C., Tadano, Y. S., Godoi, A. F. L., Pauliquevis, T., Sarmiento, H., Rempel, D., Yamamoto, C. I., Marchi., M. R.R., Potgieter-Vermaak, S., & Godoi, R.H.M. (2018). Polycyclic aromatic hydrocarbons (PAHs) and nitrated analogs associated to particulate matter emission from a Euro V-SCR engine fuelled with diesel/biodiesel blends. Science of The Total Environment, 644, 675-682. doi.org/10.1016/j.scitotenv.2018.07.007
Burwell JR, R. L. (1976). Manual of symbols and terminology for physicochemical quantities and units - Appendix II. Definitions, terminology and symbols in colloid and surface chemistry. Part II. Heterogeneous catalysis. International Union of Pure and Applied Chemistry. Elsevier.
Cheng, X., & Bi, X. T. (2014). A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology, 16, 1-18. doi.org/10.1016/j.partic.2014.01.006
Cleveland, M. J., Ziemba, L.D., Griffin, R. J., Dibb, J. E., Anderson, C. H., Lefer, B., & Rappengluck, B. (2012). Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy. Atmospheric Environment, 54, 511-518. doi.org/10.1016/j.atmosenv.2012.02.074
CETESB. (2021). Relatório de qualidade do ar no estado de São Paulo 2020. Companhia Ambiental do Estado de São Paulo. São Paulo.
CONAMA. (2008). Resolução-RE Nº403 de 11 de novembro de 2008. Conselho Nacional do Meio Ambiente.
DENATRAN. (2019). Estatística Frota 2019: Quantidade de Veículos por UF Município e Combustível. Departamento Nacional de Trânsito. https://www.gov.br/infraestrutura/pt-br/assuntos/transito/conteudo-denatran/frota-de-veiculos-2019.
Fang, D., Li, D., He, F., Xie, J., Xiong, C., & Chen, Y. (2019). Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx. Computational Materials Science, 160, 374-381. doi.org/10.1016/j.commatsci.2019.01.025
Gao, C., Shi, J., Fan, Z., Wang, B., Wang, Y., He, C., Wang, X., Li, J., & Niu, C. (2018). "Fast SCR" reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3. Applied Catalysis A: General, 564, 102-112. doi.org/10.1016/j.apcata.2018.07.017
Hao, C., Zhang, C., Zhang, J., Wu, J., Yue, Y., & Qian, G. (2022). An efficient strategy to screen an effective catalyst for NOx-SCR by deducing surface species using DRIFTS. Journal of Colloid and Interface Science, 606, 677-687. doi.org/10.1016/j.jcis.2021.08.070
Huang, C., Guo, R., Pan, W., Sun, X., Liu, S., Liu, J., Wang, Z., & Shi, X. (2019). SCR of NOx by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: the improved K resistance. Journal of the Energy Institute, 92, 1364-1378. doi.org/10.1016/j.joei.2018.09.005
Huang, J., Huang, H., Jiang, H., & Liu, L. (2019). The promotional role of Nd on Mn/TiO2 catalyst for the low-temperature NH3 SCR of NOx. Catalysis Today, 332, 49 58. doi.org/10.1016/j.cattod.2018.07.031
Jankowska, A., Ciuba, J., Kowalcyk, A., Rutkowska, M., Piwowarska, Z., Michalik, M., & Chmielarz, L. (2021). Mesoporous silicas of MCM 41 type modified with iron species by template ion-exchange method as catalysts for the high-temperature NH3-SCR process - Role of iron species aggregation, silica morphology and associated reactions. Catalysis Today, 390-391, 281-294. doi.org/10.1016/j.cattod.2021.09.033
Jia, B., Guo, J., Luo, H., Shu, S., Fang, N., & Li, J. (2018). Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2-TiO2. Applied Catalysis A: General, 553, 82-90. doi.org/10.1016/j.apcata.2017.12.016
Jiang, B., Lin, B., Li, Z., Zhao, S., & Chen, Z. (2020). Mn/TiO2 catalysts prepared by ultrasonic spray pyrolysis method for NOx removal in low-temperature SCR reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124210. doi.org/10.1016/j.colsurfa.2019.124210
Kim, H. J., Jo, S., Kwon, S., Lee, J., & Park, S. (2022). NOx emission analysis according to after-treatment devices (SCR, LNT + SCR, SDPF), and control strategies in Euro-6 light-duty diesel vehicles. Fuel, 310, 122297. doi.org/10.1016/j.fuel.2021.122297
Kim, H., Kasipandi, S., Kim, J., Kang, S., Kim, J., Ryu, J., & Bae, J. (2020). Current catalyst technology of selective catalytic reduction (SCR) for NOx removal in South Korea. Catalysts, 10, 52. doi.org/10.3390/catal10010052.
Kim, Y. J., Kwon, H. J., Nam, I., Choung, J. W., Kil, J. K., Kim, H., Cha, M., & Yeo, G. K. (2010). High de NOx performance of Mn/TiO2 catalyst by NH3. Catalysis Today, 151, 244 250. doi.org/10.1016/j.cattod.2010.02.074
Li, J., Chen, J., Ke, R., Luo, C., & Hao, J. (2007). Effects of precursors on the surface Mn species and the activities for NO reduction over MnO/TiO2 catalysts. Catalysis Communications, 8, 1896-1900. doi.org/10.1016/j.catcom.2007.03.007
Li, Q., Li, X., Li, W., Zhong, L., Zhang, C., Fang, Q., & Chen, G. (2019). Effect of preferential exposure of anatase TiO2 {0 0 1} facets on the performance of Mn-Ce/TiO2 catalysts for low temperature selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 369, 26 34. doi.org/10.1016/j.cej.2019.03.054
Li, W., Guo, R., Wang, S., Pan, W., Chen, Q., Li, M., Sun, P., & Liu, S. (2016). The enhanced Zn resistance of Mn/TiO2 catalyst for NH3-SCR reaction by the modification with Nb. Fuel Processing Technology, 154, 235 242. doi.org/10.1016/j.fuproc.2016.08.038
Mohan, S., & Dinesha, P. (2021). Global kinetic modeling of low-temperature NH3-SCR for NOx removal using Cu-BEA catalyst. Materialstoday: Proceedings. 52, 1321-1325. doi.org/10.1016/j.matpr.2021.11.062
Niu, C., Wang, B., Xing, Y., Su, W., He, C., Xiao, L., Xu, Y., Zhao, S., Cheng, Y., & Shi, J. (2021). Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia. Journal of Cleaner Production, 290, 125858. doi.org/10.1016/j.jclepro.2021.125858
Pagani, R., Kovaleski J. L., & Resende, L. M. (2015). Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105, 2109-2135. doi.org/10.1007/s11192-015-1744-x
Shahir, V. K., Jawahar, C. P., & Suresh, P. R. (2015). Comparative emissions of diesel and biodiesel on CI engine with emphasis to emissions A review. Renewable and Sustainable Energy Reviews, 45, 686 697. doi.org/10.1016/j.rser.2015.02.042
Shen, Q., Dong, S., Li, S., Yang, G., & Pan, X. (2021). A review on the catalytic decomposition of NO by perovskite-type oxides. Catalysts, 11, 622. doi.org/10.3390/catal11050622
Shi, J., Zhang, Z., Chen, M., Zhang, Z., & Shangguan, W. (2017). Promotion effect of tungsten and iron co addition on the catalytic performance of MnOx/TiO2 for NH3-SCR of NOx. Fuel, 210, 783-789. doi.org/10.1016/j.fuel.2017.09.035
Sun, X., Guo, R., Liu, J., Fu, Z., Liu, S., Pan, W., Shi, X., Qin, H., Wang, Z., & Liu, X. (2018). The enhanced SCR performance of Mn/TiO2 catalyst by Mo modification: Identification of the promotion mechanism. International Journal of Hydrogen Energy, 43, 16038 16048. doi.org/10.1016/j.ijhydene.2018.07.057
Thirupathi, B., & Smirniotis, P. G. (2011). Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 110, 195-206. doi.org/10.1016/j.apcatb.2011.09.001
Thirupathi, B., & Smirniotis, P. G. (2012). Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 288, 74-83. doi.org/10.1016/j.jcat.2012.01.003
Wang, A., & Olsson, L. The impact of automotive catalysis on the United Nations sustainable development goals. Nature Catalysis, 2, 566-570. doi.org/10.1038/s41929-019-0318-3
Wei, L., Cui, S., Guo, H., & Zhang, L. (2018). The effect of alkali metal over Mn/TiO2 for low temperature SCR of NO with NH3 through DRIFT and DFT. Computational Materials Science, 144, 216-222. doi.org/10.1016/j.commatsci.2017.12.013
Xie, S., Li, L., Jin, L., Wu, Y., Liu, H., Qin, Q., Wei, X., Liu, J., Dong, L., & Li, B. (2020). Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3 SCR and in situ DRIFTS for investigating the reaction mechanism. Applied Surface Science, 515, 146014. doi.org/10.1016/j.apsusc.2020.146014
Xu, G., Guo, X., Cheng, X., Yu, J., & Fang, B. (2021). A review of Mn-based catalysts for low temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale, 13, 7052. doi.org/10.1039/D1NR00248A
Yan, R., Lin, S., Li, Y., Liu, W., Mi, Y., Tang, C., Wang, L., Wu, P., & Peng, H. (2020). Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. Journal of Hazardous Materials, 396, 122592. doi.org/10.1016/j.jhazmat.2020.122592
Ye, B., Lee, M., Jeong, B., Kim, J., Lee, D. H., Baik, J. M., & Kim, H. (2019). Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catalysis Today, 328, 300-306. doi.org/10.1016/j.cattod.2018.12.007
Zhang, W., Chen, J., Guo, L., Zheng, W., Wang, G., Zheng, S., & Wu, X. (2021). Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts. Journal of Fuel Chemistry and Technology, 49, 1294-1315. doi.org/10.1016/S1872-5813(21)60080-4
Zhao, W., Dou, S., Zhang, K., Wu, L., Wang, Q., Shang, D., & Zhong, Q. (2019). Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOx. Chemical Engineering Journal, 364, 401-409. doi.org/10.1016/j.cej.2019.01.166
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jackson Anderson Sena Ribeiro; Emanoel Jessé Rodrigues Sousa; Joyce de Sousa Filgueiras; Rinaldo dos Santos Araújo; Gloria Maria Marinho Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.