Assessment of implants installed in grafted maxillary sinuses after prosthetic rehabilitation




Bone grafting; Sinus floor augmentation; Dental implants.


Purpose: To compare the stability and bone loss of implants installed in the maxillary sinus after sinus lift using Bio-ossä Small and Large, before functional loading (T1) and after it (T2). Methods: Ten patients received bone graft in the maxillary sinus in two different granulations: Bio-ossä Small and Large, with one granulation per sinus. After 8 months, the implants were installed. Prosthesis manufacturing and installation occurred after a six-month. Out of 10 patients, six (13 implants) were selected, with an average age of 53.4 years. The stability was measured with a resonance frequency and all implants installed showed high values in both groups. Results: The comparison between times showed a statistical difference with the Bio-ossä Large particles, in which T1 (64.21±7.41) was lower than T2 (69.96±4.95; P=0.003). However, the comparison between the different particle dimensions in the same period didn’t show a statistical difference. Regarding marginal bone loss, there wasn’t statistical difference between the particle dimensions. There wasn’t correlation between stability and marginal bone loss and between the different biomaterial particle dimensions. Conclusion: The implants installed in grafted maxillary sinus with both Bio-Ossä particle dimensions showed similar behavior, allowing implant stability and functional loading.


Assaf, F., Siqueira-Ibelli, G., Margonar, R., Santos, P.L., Souza-Faloni, A.P., Queiroz, T.P. (2020). Survival of short dental implants in atrophied jaw: a systematic review. International Journal Inteedisciplinary Dentistry. 13(1); 44-46,

Barewal, R.M., Stanford, C. & Weesner, T.C. (2012). A Randomized Controlled Clinical Trial Comparing the Effects of Three Loading Protocols on Dental Implant Stability. International Journal Oral Maxillofacial Implants. 27:945–956.

Bornstein, M.M., Chappuis, V., von Arx, T. & Buser, D. (2008). Performance of dental implants after staged sinus floor elevation procedures: 5-year results of a prospective study in partially edentulous patients. Clinical Oral Implant Research, 19: 1034–1043.

Bragger, U., Gerber, C., Joss, A., Haenni, S., Meier, A., Hashorva, E. & Lang, N.P. (2004). Patterns of tissue remodeling after placement of ITIsdental implants using an osteotome technique: a longitudinal radiographic case cohort study. Clinical Oral Implant Research, 15: 158–166.

Browaeys, H., Vandeweghe, S., Johansson, C.B., Jimbo, R., Deschepper, E. & De Bruyn H. (2013). The histological evaluation of osseointegration of surface enhanced microimplants immediately loaded in conjunction with sinus lifting in humans. Clinical Oral Implant Research, 24(1):36-44.

Chackartchi, T., Iezzi, G., Goldstein, M., Klinger, A., Soskolne, A., Piattelli, A. & Shapira, L. (2011) Sinus floor augmentation using large (1–2 mm) or small (0.25–1 mm) bovine bone mineral particles: a prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study. Clinical Oral Implant Research, 22:473–480.

Consolaro, A., de Carvalho, R.S., Francischone Jr., C.E., Consolaro, M.F.M.O. & Francischone, C.E. (2010). Saucerização de implantes osseointegrados e o planejamento de casos clínicos ortodônticos simultâneos. Dental Press Journal Orthodontics, 15(3):19-30.

De Molon, R.S., Magalhaes-Tunes, F.S., Semedo, C.V., Furlan, R.G., de Souza, L.G.L., de Souza Faloni, A.P., Marcantonio Jr, E. & Faeda, R.S. (2019). A randomized clinical trial evaluating maxillary sinus augmentation with different particle sizes of demineralized bovine bone mineral: histological and immunohistochemical analysis. International Journal Oral Maxillofacial Surgery, 48(6): 810-823

Degidi, M., Perotti, V., Piatelli, A. & Iezzi, G. (2010). Mineralized bone implant contact and implant stability quotient in 16 human implants retrieved after early healing periods: a histologic and histomorphometric evaluation. International Journal Oral Maxillofacial Implants, 25(1):45-48.

Dos Anjos, T.L., de Molon, R.S., Paim, P.R., Marcantonio, E., Marcantonio Jr, E. & Faeda, R.S. (2016). Implant stability after sinus floor augmentation with deproteinized bovine bone mineral particles of different sizes: a prospective, randomized and controlled split-mouth clinical trial. International Journal Oral Maxillofacial Surgery, 45(12):1556‐1563.

Fanuscu, M.I., Vu, H.V. & Poncelet, B. (2004). Implant biomechanics in grafted sinus: a finite element analysis. Journal Oral Implantology, 30(2):59-68.

Gabay, E., Cohen, O. & Machtei, E.E. (2012). A novel device for resonance frequency assessment of one-piece implants. International Journal Oral Maxillofacial Implants, 27: 523-527.

Gapski, R., Wang, H.L., Mascarenhas, P. & Lang, N.P. (2003). Critical review of immediate implant loading. Clinical Oral Implant Research, 14(5):515-527.

Hallman, M., Cederlund, A., Lindskog, S., Lundgren, S. & Sennerby, L. (2001). A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. Clinical Oral Implant Research, 12(2):135-143.

Haas R, Mailath G, Dortbudak O, Watzek, G. (1998). Bovine hydroxyapatite for maxillary sinus augmentation: analysis of interfacial bond strength of dental implants using pull-out tests. Clinical Oral Implant Research, 9: 117-122.

Herrero-Climent, M., Albertini, M., Rios-Santos, J.V., Lázaro-Calvo, P., Fernández-Palacín, A. & Bullon, P. (2012). Resonance frequency analysis-reliability in third generation instruments: Osstell mentor®. Medicina oral patología oral y cirugía bucal, 17(5): 801-806.

Iezzi, G., Scarano, A., Mangano, C., Cirotti, B. & Piattelli, A. (2008). Histologic Results From a Human Implant Retrieved Due to Fracture 5 Years After Insertion in a Sinus Augmented With Anorganic Bovine Bone. Journal Periodontology, 79:192-198.

Inglam, S., Suebnukarn, S., Tharanon, W., Apatananon, T. & Sitthiseripratip, K. (2010). Influence of graft quality and marginal bone loss on implants placed in maxillary grafted sinus: a finite element study. Medical & biological engineering & computing, 48:681–689.

Jensen, S.S., Aaboe, M., Janner, S.F., Saulacic, N., Bornstein, M.M., Bosshardt, D.D. & Buser, D. (2015). Influence of particle size of deproteinized bovine bone mineral on new bone formation and implant stability after simultaneous sinus floor elevation: a histomorphometric study in minipigs. Clinical Implant Dentistry Related Research, 17(2):274-285.

Jung, R.E., Windisch, S.I., Eggenschwiler, A.M., Thoma, D.S., Weber, F.E. & Hämmerle, C.H. (2009) A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dentalimplants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. Clinical Oral Implant Research, 20: 660–666.

Kwon, B. & Kim, S. (2006). Finite Element Analysis of Different Bone Substitutes in the Bone Defects Around Dental Implants. Implant Dentistry, 15(3):254-264;

Meijer, H.J.A., Starmans, F.J.M., Steen, W.H.A. & Bosman, F. (1993). A three-dimensional, finite-element analysis of bone around dental implants in na edentulous human mandible. Archives Oral Biology, 38(6): 491-496.

Oliveira, R., Hage, M.E., Carrel, J., Lombardi, T. & Bernard, J.P. (2012). Rehabilitation of the Edentulous Posterior Maxilla After Sinus Floor Elevation Using Deproteinized Bovine Bone: A 9-Year Clinical Study. Implant Dentistry, 21 (5): 422-426.

Romanos, G.E., Toh, C.G., Siar, C.H., Wicht, H., Yacoob, H. & Nentwig, G.H. (2003). Bone-implant interface around titanium implants under different loading conditions: a histomorphometrical analysis in the Macaca fascicularis monkey. J Periodontology, 74(10):1483-1490.

Santos, P.L., Gulinelli, J.L., Telles, S., Betoni Júnior, W. Okamoto, R., Chiacchio Buchignani, V. & Queiroz, T.P. (2013) Bone substitutes for peri-implant defects of postextraction implants.International Journal Biomaterials.307136.

Scarano, A., Degidi, M., Iezzi, G., Pecora, G., Piattelli, M., Orsini, G., Caputi, S., Perrotti, V., Mangano, C. & Piattelli, A. (2006). Maxillary Sinus Augmentation With Different Biomaterials: A Comparative Histologic and Histomorphometric Study in Man. Implant Dentistry, 15(2): 197-207.

Shen, Y., Rodriguez, E.D., Wei, F., Tsai, C.Y. & Chang, Y.M. (2015). Aesthetic and Functional Mandibular Reconstruction With Immediate Dental Implants in a Free Fibular Flap and a Low-Profile Reconstruction Plate (Five-Year Follow-up). Annals of plastic Surgery, 74: 442-446.

Testori, T., Wallace, S.S., Trisi, P., Capelli, M., Zuffetti, F. & Del Fabbro, M. (2013). Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled clinical histomorphometric trial. International Journal Periodontics Restorative Dentistry, 33:467–475.

Vandamme, K., Naert, I., Geris, L., Vander Sloten, J., Puers, R. & Duyck, J. (2007). The effect of micro-motion on the tissue response around immediately loaded roughened titanium implants in the rabbit. European Journal of Oral Sciences, 115(1):21-29.

Waite, P.D., Sastravaha, P. & Lemons, J.E. Biologic Mechanical Advantages of 3 Different Cranial Bone Grafting Techniques for Implant Reconstruction of the Atrophic Maxilla. Journal Oral Maxillofacial Surgery, 2005; 63(1):63-67.

Wallace, S.S. & Froum, S.J. (2003). Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Annals Periodontology, 8:328–343.

Wang, F., Zhou, W., Monje, A., Huang, W., Wang, Y. & Wu, Y. (2017). Influence of Healing Period Upon Bone Turn Over on Maxillary Sinus Floor Augmentation Grafted Solely with Deproteinized Bovine Bone Mineral: A Prospective Human Histological and Clinical Trial. Clinical Implant Dentistry Related Research, 19(2): 341-350.




How to Cite

GALLETTI, L. D. .; SANTOS, P. L.; MARCANTONIO JUNIOR, E. .; MARGONAR, R.; FAEDA, R. S. . Assessment of implants installed in grafted maxillary sinuses after prosthetic rehabilitation. Research, Society and Development, [S. l.], v. 11, n. 14, p. e259111435943, 2022. DOI: 10.33448/rsd-v11i14.35943. Disponível em: Acesso em: 9 dec. 2022.



Health Sciences