Effects of different coverage plants and organic extract on chemical attributes of a loaded arenos clay soil

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.35994

Keywords:

Zea mays; Urochloa sp.; Soil fertility; Soil organic matter; No-tillage system.

Abstract

This work aimed to evaluate the effect of the cultivation of different species of cover crops and different fertilizer compositions in relation to the main chemical characteristics of the soil. The state was developed in a commercial area in the period of the first harvest of the years 2020 and 2021, composed of the following treatments: T1 - corn + conventional fertilization, T2 - organic corn, T3 - organomineral corn, T4 - corn + biochar, T5 - mix of cover crops, T6 - corn + Brachiaria, T7 - corn + breviflora, T8 - mix of cover plants + biochar, T9 - millet, T10 - no-tillage + mix of cover plants. Soil samples were collected in the period of November and December of each year and submitted to analysis in relation to the main chemical characteristics of the soil. In general, soil pH values increased from 2020 to 2021, demonstrating that the cover and fertilization managements used increased soil pH. For the values of aluminum and aluminum saturation, effective CTC, sum of bases and saturation by bases there was no significant variation for the treatments. Managements T1, T3 and T6 showed higher calcium contents. There was greater availability of nutrients in the soil as a function of the vegetation cover, mainly for potassium and phosphorus contents.

References

Agegnehu, G. & Amede, T. (2017). Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A review. Pedosphere. 27(4), 662-680.

Altieri, M. A., Funes-Monzote, F. R. & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agronomy for Sustainable Development, 32(1), 1-13.

Assis, R. M. A. de, Carneiro, J. J., Medeiros, A. P. R., Carvalho, A. A. de, Honorato, A. C. da, Carneiro, M. A. C., Bertolucci, S. K. V. & Pinto, J. E B. P. (2020). Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Industrial Crops and Products, 158, 112981.

Chiodini, B. M., Silva, A. G. da, Negreiros, A. B. & Magalhães, L. B. (2013). Matéria orgânica e a sua influência na nutrição de plantas. Revista Cultivando o Saber, 6(1), 181-190.

Bulluck, L. R., Brosius, M. G., Evanylo, K. & Ristaino, J. B. (2002) Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19(2), 147-160.

Cardoso, E. J. B. N. & Andreote, F. D. (2016). Microbiologia do solo. 2° ed. Piracicaba: ESALQ.

Coser, T. R., Ramos, M. L. G., Figueiredo, C. C. de, Carvalho, A. M. de, Cavalcante, E., Moreira, M. K. dos R., Araujo, P. S. M. & Oliveira, S. A. de. (2016) Soil microbiological properties and available nitrogen for corn in monoculture and intercropped with forage. Pesquisa Agropecuária Brasileira, 51(9), 1660-1667.

Costa, H. S., Santos, T. S., Cândido, J. S., Jesus, L. M., Souza, T. A. A. & Martins, J. C. (2019). Indicadores químicos de qualidade de solos em diferentes coberturas vegetais e sistemas de manejo. Revista Fitos, 13(1), 42-48.

Ebeling, A. G., Anjos, L. H. C. dos, Perez, D. V., Pereira, M. G. & Valladares, G. S. (2008). Relação entre acidez e outros atributos químicos em solos com teores elevados de matéria orgânica. Bragantia, 67(2), 429-439.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042.

Fraga, V, S. da. & Salcedo, I. H. (2004). Declines of organic nutrient pools in tropical semi-arid soils under subsistence farming. Soil Science Society of America Journal, 68 (1), 215-224.

Finzi, A. C., Abramoff, R. Z. & Spiller, K. S. (2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21, 2082-2094.

Haney, R. L., Franzluebbers, A. J., Jin, V. L., Johnson, M-V., Haney, E. B., White, M. J. & Harmel, R. D. (2012). Soil organic C:N vs. water-extractable organic C:N. Open Journal Soil Science, 02(3), 269-274.

He, Z., Pagliari, P. H. & Waldrip, H. M. (2016). Applied and environmental chemistry of animal manure: a review. Pedosphere, 26(6), 779-816.

He, Z., Tazisong, I. A., Yin, X., Watts, D. B., Senwo, Z. N., & Torbert, H. A. (2019). Long-Term Cropping System, Tillage, and Poultry Litter Application Affect the Chemical Properties of an Alabama Ultisol. Pedosphere, 29(2), 180–194.

Higashikawa, F. S. & Menezes Júnior, F. O. G. (2017). Adubação mineral, orgânica e organomineral: efeitos na nutrição, produtividade, pós-colheita da cebola e na fertilidade do solo. Revista Scientia Agraria, 18(2), 1-10.

Ji, L., Ni, K., Wu, Z., Zhang, J., Yi, X., Yang, X., Ling, N., You, Z., Guo, S. & Ruan, J. (2020). Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization. Biology and Fertility of Soils, 56(5), 633-646.

Lemaire, G., Gastal, F., Franzluebbers, A. & Chabbi, A. (2015). Grassland-Cropping Rotations: An avenue for agricultural diversification to reconcile high production with environmental quality. Environmental Management, 56(5), 1065-1077.

Ling, N., Sun, Y., Ma, J., Guo, J., Zhu, P., Peng, C., Yu, G., Ran, W., Guo, S. & Shen, Q. (2014). Response of the bacterial diversity and soil enzyme activity in particle-size fractions of Mollisol after different fertilization in a long-term experiment. Biology and Fertility of Soils, 50(6), 901-911.

Lobato, E. & de Sousa, D. M. G. (2004). Cerrado: correção do solo e adubação. Distrito Federal: Embrapa Cerrados.

Malavota, E. (2002). Adubos e adubações. São Paulo: Editora NBL.

Malta, A. O. de, Pereira, W. E., Torres, M. N. N., Malta, A. O. de, Silva, E. S. da. & Silva, S. I. A. da. (2019). Atributos físicos e químicos do solo cultivado com gravioleira, sob adubação orgânica e mineral. PesquisAgro, 2(1), 11-23.

Mundo, N. (2008). Ocorrência de solos ácidos. (Tese de doutorado), Universidade Federal do Paraná, Curitiba, Brasil.

Notaris, C. de, Jensen, J. L., Olesen, J. E., Silva, T. S. da, Rasmussen, J., Panagea, I. & Rubaek, G. H. (2021). Long-term soil quality effects of soil and crop management in organic and conventional arable cropping systems. Geoderma, 403, 115383.

Ohno, T., He, Z., Tazisong, I. A. & Senwo, Z. N. (2009) Influence of tillage, cropping, and nitrogen source on the chemical characteristics of humic acid, fulvic acid, and water-soluble soil organic matter fractions of a long-term cropping system study. Soil Sciense, 174(12), 652-660.

Philippot, L., Raaijmakers, J. M. & Lemanceau, P., van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11), 789–799.

Ren, C., Liu, S., van Grinsven, H., Reis, S., Jin, S., Liu, H. & Gu, B. (2019). The impact of farm size on agricultural sustainability. Journal of Cleaner Production, 220, 357-367.

Ricci, M. S. F dos., Casali, V. W. D., Cardoso, A. A. & Ruiz, H. A. (1995). Teores de nutrientes em duas cultivares de alface adubadas com composto orgânico. Pesquisa Agropecuária Brasileira, 30(8), 1035-1039.

Rizzi, L.C., Rabelo, L.R., Morini Filho, W., Savazaki, E.T. & Kavati, R. (1998). Cultura do maracujá - azedo. Campinas: CATI.

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baigorria, G. & Winter, J. M. (2013). The agricultutal model intercomparison and improvemente Project (AgMIP): protocols and pilo studies. Agricultural and Forest Meteorology, 170, 166-183.

Smith, P. (2015). Malthus is still wrong: we can feed a world of 9-10 billion, but only by reducing food demand. Proceedings of the Nutrition Society. 74(3), 187-190.

Souza, T. T., Lima, A. B. & Teixeira, W. G. O aumento da capacidade de troca de cátions (ctc) do solo através da aplicação de carvão vegetal em um latossolo amarelo na Amazônia central. 61° Reunião Anual da SBPC, 2009. Disponível em: < http://www.sbpcnet.org.br/livro/61ra/resumos/resumos/5950.htm >, acesso em: 10/03/2021.

Taiz, L. & Zeiger, E. (2013). Fisiologia vegetal. 5. ed. Porto Alegre: Artmed.

Torres, J. L. R. & Pereira, M. G. (2008). Dinâmica do potássio nos resíduos vegetais de plantas de cobertura no Cerrado. Revista Brasileira de Ciência do Solo, 32(40), 1609-1618.

Wang, X. B., Cai, D. X., Hoogmoed, W. B., Oenema, O. & Perdok, U. D. (2006). Potential effect of conservation tillage on sustainable land use: A review of global long-term studies. Pedosphere. 16(5), 587–595.

Wen, Z. H., Shen, J., Blackwell, M., Li, H., Zhao, B. & Yuan, H. (2016). Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedosphere, 26(1), 62–73.

Wu, Z. X.; Li, H. H. & Liu, Q. L. (2020) Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere, 16.

Yin, X. & Al-Kaisi, M. M. (2004). Periodic response of soybean yields and economic returns to long-term no-tillage. Agronomy Journal. 96(3), 723–733.

Published

23/10/2022

How to Cite

MAIA, J. C. de S. .; FERREIRA, P. A.; BASÍLIO, J. P. .; MARTINS, L. A. .; CECCHIN, L. . Effects of different coverage plants and organic extract on chemical attributes of a loaded arenos clay soil. Research, Society and Development, [S. l.], v. 11, n. 14, p. e158111435994, 2022. DOI: 10.33448/rsd-v11i14.35994. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35994. Acesso em: 25 nov. 2024.

Issue

Section

Agrarian and Biological Sciences