New therapeutic approaches: Antimicrobial compounds produced by marine algae

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36059

Keywords:

Seaweed; Antimicrobial; Bacterial resistance.

Abstract

Bacterial resistance is a global public health problem. The World Health Organization recently classified this issue as a priority for investment in the search for new antimicrobials. Given the scarcity of effective antimicrobials against resistant bacteria, the future focus of medical therapeutics and research is to look beyond traditional antimicrobials and seek alternatives that can regulate microbial virulence as well as growth inhibition. Recent trends in drug research from natural sources suggest that algae, in particular, hold promise for the discovery of new biochemically active substances. In view of this, the objective of this work is to describe the importance of the studies of antimicrobial compounds that are present in seaweed, since therapeutic innovations are necessary in order to be able to combat infections caused by resistant bacteria. The antimicrobial and antibiofilm activity of seaweed extracts against human bacterial pathogens has been reported by recent studies, indicating that seaweed extracts may represent therapeutic alternatives against resistant bacteria and the absence of effective drugs for the treatment of infections caused by superbacteria. Therefore, a bibliographic review of exploratory approach was carried out, presenting data and information exposed in articles, magazines, and scientific journals. Thirty-two articles ranging from the years 2018 to 2021, written in English and Portuguese languages, were selected. The data evaluated were the importance of the production of new antimicrobials, as well as effective results in the use of seaweed in the pharmaceutical industry.

References

Capillo, G., Savoca, S., Costa, R., Sanfilippo, M., Rizzo, C., Giudice, A. L., Albergamo, A., Rando, R., Bartolomeo, G., Spanò, N. & Faggio, C. (2018). New Insights into the Culture Method and Antibacterial Potential of Gracilaria gracilis. Marine drugs, 16(12), 492-502.

Cardoso, I. L. A. (2018). Extração e análise de compostos com potencial antibacteriano e antifúngico da alga vermelha Grateloupia turuturu. (Tese de Doutorado). Universidade de Coimbra.

Collignon, P. & Beggs, J. J. (2019). Facilitadores socioeconômicos do contágio: fatores que impulsionam a epidemia de resistência antimicrobiana. Antibiotics (Basel), 8(3), 86.

Das, R., Kotra, K., Singh, P., Loh, B., Leptihn, S. & Bajpai, U. (2022). Alternative Treatment Strategies for Secondary Bactean8,d Fungal Infections Associated with COVID-19. Infectious diseases and therapy, 11(1), 53-78.

Dayanidhi, D. L., Thomas, B. C, Osterberg, J. S., Vuong, M., Vargas, G., Kwartler, S. K., Schmaltz, E., Dunphy-Daly, M. M., Schultz, T. F, Rittschof, D., Eward, W.C, Roy, C. & Somarelli, J. A. (2021). Exploring the diversity of the marine environment for new anti-cancer compounds. Frontiers in Marine Science, 7, 614766.

Filho, C. & Pereira, G. (2022). Avaliação da atividade osteogênica e antidipogênica de polissacarídeos sulfatados de macroalgas marinhas verdes.

Fonseca, C. I. R. (2021). Caraterização da atividade antimicrobiana da alga Plocamium cartilagineum para aplicações biotecnológicas. (Tese de Doutorado). Universidade de Lisboa, faculdade de ciências.

Ghareeb, M. A., Tammam, M. A., El-Demerdash, A. & Atanasov, A. G. (2020). Insights about clinically approved and Preclinically investigated marine natural products. Current Research in Biotechnology, 2, 88-102.

Gil, A. Como elaborar projetos de pesquisa. Atlas: São Paulo, 2007.

Honório, A. E. (2018). Avaliação química e biológica de fungos endofíticos associados as algas marinhas Acanthophora spicifera, Dichotomaria marginata e Sargassum vulgare.

Karnjana, K., Soowannayan, C. & Wongprasert, K. (2019). Ethanolic extract of red seaweed Gracilaria fisheri and furanone eradicate Vibrio harveyi and Vibrio parahaemolyticus biofilms and ameliorate the bacterial infection in shrimp. Fish & Shellfish Immunology, 88, 91-101.

Klimjit, A., Praiboon, J., Tiengrim, S., Chirapart, A. & Thamlikitkul, V. (2021). Phytochemical composition and antibacterial activity of brown seaweed, Padina australis against human pathogenic bacteria. Journal of Fisheries and Environment, 45(1), 8-22.

Kumar, N. & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370.

Jun, J., Jung, M., Jeong, I., Yamazaki, K., Kawai, Y. & Kim, B. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine drugs, 16(9), 301.

Little, S. M., Senhorinho, G. N. A., Saleh, M., Basiliko, N. & Scott, J. A. (2021). Antibacterial compounds in green microalgae from extreme environments: a review. Algae, 36(1), 61-72.

Lopes, S. S. G. (2020). Atividades antioxidante, antimicrobiana e fitotóxica dos extratos etanólicos das macroalgas marinhas vermelhas Bryothamnion seaforthii e B. triquetrum coletadas na praia de Paracuru, Ceará.

Machado, M. A. V. (2019). Organismos Marinhos como Fonte de Novos Fármacos. (Tese de Doutorado). Universidade de Lisboa – Portugal.

Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M. & Hilaire, M. G. (2020). Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infection and drug resistance, 13, 4713-4738.

Mancuso, G., Midiri, A., Gerace, E. & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10, 1-14.

Mukherjee, G. & Mukhopadhyay, B., Sil, A. K. (2021). Edible marine algae: a new source for anti-mycobacterial agents. Folia Microbiologica, 66(1), 99-105.

Rex, J. H., Lynch, H. F., Cohen, I. G., Darrow, J. J. & Outterson, K. (2019). Designing development programs for non-traditional antibacterial agents. Nature Communications, 10(3436), 1-10.

Santhakumaran, P., Ayyappan, S. M. & Raio, J. J. (2020). Aplicações nutracêuticas de vinte e cinco espécies de microalgas verdes de rápido crescimento, conforme indicado pelo seu conteúdo antibacteriano, antioxidante e mineral. Algal Research, 47, 101878.

Singkoh, M. F. O., Katill, D. Y. & Rumondor, M. J. (2021). Phytochemical screening and antibacterial activity of brown algae Padina australis from Atep Oki Coast, East Lembean of Minahasa. Aquaculture, Aquarium, Conservation & Legislation, 14(1), 455-461.

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, N., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U. & Magrini, M. (2018). WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 18(3), 318-327.

Tan, X., Zhou, Y., Zhou, X., Xia, X., Wei, Y., He, L., Tang, H. & Yu, L. (2018). Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis, a rare medicinal plant endemic to China. Scientific Reports, 8(1), 5929.

Teo, B. S. X., Gan, R. Y., Aziz, S. A., Sirirak, T., Asmani, M. F. M. & Yusuf, E. (2021). In vitro evaluation of antioxidant and antibacterial activities of Eucheuma cottonii extract and its in vivo evaluation of the wound-healing activity in mice. J Cosmet Dermatol, 20(3), 993-1001.

Thanigaivel, S., Chandrasekaran, N., Mukherjee, A. & Thomas, J. (2019). Protective efficacy of microencaspsulated seaweed extracts for preventing Aeromonas infections in Oreochromis mossambicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 218 (1), 36-45.

Vishwakarma J. & Vavilala S. L. (2019). Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J Appl Microbiol, 127(4), 1004-1017.

Webster, J., Watson, J.T. (2002). Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly & The Society for Information Management, 26(2), 13-23.

World Health Organization. (2020). Lack of new antibiotics threatens global efforts to contain drug-resistant infections. [Internet]. Genebra: WHO, [cited 2020 Jan 17]. https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections.

Published

18/10/2022

How to Cite

SILVA, J. M. do N. .; CALADO, J. P. L.; BARROS, A. V.; SILVA, M. E. M. da .; SOUZA , B. S. de .; RODRIGUES, W. da S.; QUINTAS, J. M. .; SANTOS, J. C. B. dos . New therapeutic approaches: Antimicrobial compounds produced by marine algae. Research, Society and Development, [S. l.], v. 11, n. 14, p. e38111436059, 2022. DOI: 10.33448/rsd-v11i14.36059. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36059. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences