Application of predictive modeling via decision tree in cases of Severe Acute Respiratory Syndrome (SARS), with emphasis on Corona Virus Disease 2019 (COVID-19) in Brazil for the period from 2020 to 2022
DOI:
https://doi.org/10.33448/rsd-v11i15.36173Keywords:
Decision tree; COVID-19; Statistic; Prediction; SARS.Abstract
Severe Acute Respiratory Syndrome (SARS) covers cases of Influenza Syndrome (GS) that evolve with compromised respiratory function which, in most cases, leads to hospitalization. The pandemic caused by the Corona Virus Disease (COVID-19) has become the new global challenge. Patients who had certain chronic diseases had a worse prognosis when they were introduced to the new coronavirus. It is essential to determine the main risk groups for any disease, since it facilitates the decision-making of health professionals. This research aimed to apply predictive modeling via decision tree to estimate the probability of the individual who: has SARS being cured or dying and has SARS being cured or dying due to contamination and not contamination by COVID -19, finally analyzing the results (cases registered in Brazil). This information will help healthcare professionals understand how each comorbidity behaved. The main results showed that the proposed model fits well, finding the following survival percentages: it is better for the individual who presented symptoms of SARS to have kidney disease and asthma than to have no comorbidity, as the chance of cure is 7% higher; it is better for the individual who presented symptoms of SARS due to contamination by COVID-19 to have neurological, cardiovascular and hematological disease than to have no comorbidity, as the chance of cure is 14% higher and, finally, the individual who presented symptoms of SARS , but who has not been infected by COVID-19 has a 75% chance of cure.
References
Albuquerque, M. A., Lucena, S. L. L., & Barros, K. N. N. O. (2020). Comparação de modelo clássico e Bayesiano para dados de óbitos perinatais no ISEA, Campina Grande - PB. Research, Society and Developmen, 9(8), e464985477. https://doi.org/10.33448/rsd-v9i8.5477
Alves, D. A. N. S., Nascimento, G. I. L. A., Castanha, E. R., Luna, J. E. L., Sobral, E. F. M., Brandão, W. A., Moreira, K. A., Mendes, J. S., Cunha Filho, M., Barros, D. M. & Falcão, R. E. A. (2020). Prevalência de comorbidades na Síndrome Respiratória Aguda Grave em pacientes com COVID-19 e outros agentes infecciosos. Research, Society and Development, 9(11), e70791110286. https://doi.org/10.33448/rsd-v9i11.10286
Brasil. (2022). Dicionário de dados. Ministério da Saúde. Secretária de Vigilância em Saúde. Sistema de Informação de Vigilância Epidemiológica da Gripe. https://s3.sa-east-1.amazonaws.com/ckan.saude.gov.br/SRAG/pdfs/dicionario_de_dados_srag_hosp_17_02_2022.pdf
Brasil. (2020). Protocolo de Manejo Clínico. Ministério da Saúde. Brasília, DF. https://www.saude.ms.gov.br/wp-content/uploads/2020/03/Protocolo-Manejo-Clinico_APS_versao04.pdf
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. CRC Press.
Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76 (3), 503-514.
DataSUS. (2022). Ministério da Saúde. SRAG - Banco de Dados de Síndrome Respiratória Aguda Grave - incluindo dados da COVID-19. OpenDataSUS. https://opendatasus.saude.gov.br/dataset/srag-2021-e-2022
Freitag, V. L., Antonio, M. G. D., Loureiro, L. H., & Pereira, R. M. S. (2021). COVID 19 e a propagação de fake news sobre a contaminação pelo dióxido de carbono com o uso de máscaras faciais: Um estudo de reflexão. Research, Society and Developmen, 10(10), e104101018696. https://doi.org/10.33448/rsd-v10i10.18696
Grochtmann, M., & Grimm, K. (1993). Classification trees for partition testing. Software Testing, Verification and Reliability, 3 (2), 63-82.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1 (1), 14-23.
Moisen, G. G. (2008). Classification and regression trees. In: Jørgensen, Sven Erik; Fath, Brian D. (Editor-in-Chief). Encyclopedia of Ecology, volume 1. Oxford, UK: Elsevier. 582-588., 582-588.
R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna.
Ragsdale, C. T. (2001). Spreadsheet modeling and decision analysis: a practical introduction to management science. Cengage Learning.
Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part Applications and Reviews), 35(4), 476-487.
Samperi, R. H., Collado, C. F., & Lucio, M. del P. B. (2013). Metodologia Científica. AMGH Editora.
Vogado, L. H., Veras, R. M., Araujo, F. H., Silva, R. R., & Aires, K. R. (2019). Rede Neural Convolucional para o Diagnóstico de Leucemia. In Anais Principais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde, 46-57.
Wilkinson, L. (2004). Classification and regression trees. Systat, 11, 35-56.
Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases: IJID: official publication of the International Society for Infectious Diseases, 94, 91–95.
Zhou,F., Yu,T., Du,R., Fan,G., Liu,Y., Liu,Z., Xiang,J., Wang,Y., Song,B., Gu,X., Guan,L., Wei,Y., Li,H., Wu,X., Xu,J., Tu,S., Zhang,Y., Chen,H., & Cao,B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. doi: 10.1016/S0140-6736(20)30566-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Miriam Lecília Farias Ribeiro; Natália Moraes Cordeiro; Dâmocles Aurélio Nascimento da Silva Alves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.