Application of predictive modeling via decision tree in cases of Severe Acute Respiratory Syndrome (SARS), with emphasis on Corona Virus Disease 2019 (COVID-19) in Brazil for the period from 2020 to 2022

Authors

DOI:

https://doi.org/10.33448/rsd-v11i15.36173

Keywords:

Decision tree; COVID-19; Statistic; Prediction; SARS.

Abstract

Severe Acute Respiratory Syndrome (SARS) covers cases of Influenza Syndrome (GS) that evolve with compromised respiratory function which, in most cases, leads to hospitalization. The pandemic caused by the Corona Virus Disease (COVID-19) has become the new global challenge. Patients who had certain chronic diseases had a worse prognosis when they were introduced to the new coronavirus. It is essential to determine the main risk groups for any disease, since it facilitates the decision-making of health professionals. This research aimed to apply predictive modeling via decision tree to estimate the probability of the individual who: has SARS being cured or dying and has SARS being cured or dying due to contamination and not contamination by COVID -19, finally analyzing the results (cases registered in Brazil). This information will help healthcare professionals understand how each comorbidity behaved. The main results showed that the proposed model fits well, finding the following survival percentages: it is better for the individual who presented symptoms of SARS to have kidney disease and asthma than to have no comorbidity, as the chance of cure is 7% higher; it is better for the individual who presented symptoms of SARS due to contamination by COVID-19 to have neurological, cardiovascular and hematological disease than to have no comorbidity, as the chance of cure is 14% higher and, finally, the individual who presented symptoms of SARS , but who has not been infected by COVID-19 has a 75% chance of cure.

References

Albuquerque, M. A., Lucena, S. L. L., & Barros, K. N. N. O. (2020). Comparação de modelo clássico e Bayesiano para dados de óbitos perinatais no ISEA, Campina Grande - PB. Research, Society and Developmen, 9(8), e464985477. https://doi.org/10.33448/rsd-v9i8.5477

Alves, D. A. N. S., Nascimento, G. I. L. A., Castanha, E. R., Luna, J. E. L., Sobral, E. F. M., Brandão, W. A., Moreira, K. A., Mendes, J. S., Cunha Filho, M., Barros, D. M. & Falcão, R. E. A. (2020). Prevalência de comorbidades na Síndrome Respiratória Aguda Grave em pacientes com COVID-19 e outros agentes infecciosos. Research, Society and Development, 9(11), e70791110286. https://doi.org/10.33448/rsd-v9i11.10286

Brasil. (2022). Dicionário de dados. Ministério da Saúde. Secretária de Vigilância em Saúde. Sistema de Informação de Vigilância Epidemiológica da Gripe. https://s3.sa-east-1.amazonaws.com/ckan.saude.gov.br/SRAG/pdfs/dicionario_de_dados_srag_hosp_17_02_2022.pdf

Brasil. (2020). Protocolo de Manejo Clínico. Ministério da Saúde. Brasília, DF. https://www.saude.ms.gov.br/wp-content/uploads/2020/03/Protocolo-Manejo-Clinico_APS_versao04.pdf

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. CRC Press.

Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76 (3), 503-514.

DataSUS. (2022). Ministério da Saúde. SRAG - Banco de Dados de Síndrome Respiratória Aguda Grave - incluindo dados da COVID-19. OpenDataSUS. https://opendatasus.saude.gov.br/dataset/srag-2021-e-2022

Freitag, V. L., Antonio, M. G. D., Loureiro, L. H., & Pereira, R. M. S. (2021). COVID 19 e a propagação de fake news sobre a contaminação pelo dióxido de carbono com o uso de máscaras faciais: Um estudo de reflexão. Research, Society and Developmen, 10(10), e104101018696. https://doi.org/10.33448/rsd-v10i10.18696

Grochtmann, M., & Grimm, K. (1993). Classification trees for partition testing. Software Testing, Verification and Reliability, 3 (2), 63-82.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.

Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1 (1), 14-23.

Moisen, G. G. (2008). Classification and regression trees. In: Jørgensen, Sven Erik; Fath, Brian D. (Editor-in-Chief). Encyclopedia of Ecology, volume 1. Oxford, UK: Elsevier. 582-588., 582-588.

R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna.

Ragsdale, C. T. (2001). Spreadsheet modeling and decision analysis: a practical introduction to management science. Cengage Learning.

Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part Applications and Reviews), 35(4), 476-487.

Samperi, R. H., Collado, C. F., & Lucio, M. del P. B. (2013). Metodologia Científica. AMGH Editora.

Vogado, L. H., Veras, R. M., Araujo, F. H., Silva, R. R., & Aires, K. R. (2019). Rede Neural Convolucional para o Diagnóstico de Leucemia. In Anais Principais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde, 46-57.

Wilkinson, L. (2004). Classification and regression trees. Systat, 11, 35-56.

Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases: IJID: official publication of the International Society for Infectious Diseases, 94, 91–95.

Zhou,F., Yu,T., Du,R., Fan,G., Liu,Y., Liu,Z., Xiang,J., Wang,Y., Song,B., Gu,X., Guan,L., Wei,Y., Li,H., Wu,X., Xu,J., Tu,S., Zhang,Y., Chen,H., & Cao,B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. doi: 10.1016/S0140-6736(20)30566-3.

Published

12/11/2022

How to Cite

RIBEIRO, M. L. F.; CORDEIRO, N. M.; ALVES, D. A. N. da S. Application of predictive modeling via decision tree in cases of Severe Acute Respiratory Syndrome (SARS), with emphasis on Corona Virus Disease 2019 (COVID-19) in Brazil for the period from 2020 to 2022. Research, Society and Development, [S. l.], v. 11, n. 15, p. e01111536173, 2022. DOI: 10.33448/rsd-v11i15.36173. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36173. Acesso em: 19 nov. 2024.

Issue

Section

Exact and Earth Sciences