Physicochemical patterns of copper toxicity in Allium cepa roots

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36285

Keywords:

Contaminação por metais; Olerícolas; Root morphology.

Abstract

The work proposed the correlation between electrical conductivity data and pH in treatments with different doses of copper. Copper plays central biochemical functions in the metabolism of living beings. However, it is considered a priority pollutant. As copper uptake is mediated by membrane H+-ATPases, and bioavailability is higher in acidic soils, toxicity can be detected in changes in pH and electrical conductivity. The work was modeled on onion bulbs, Allium cepa. Two treatments were established: 0.04 mg.L-1 Cu++ (treatment 1) and 0.40 mg.L-1 Cu++ (treatment 2), plus a control. Each treatment had six replications and were analyzed in four days of collection (1st, 7th, 8th and 16th days after planting - DAP). The plants were grown in distilled water until 7 DAP. On the 8th DAP, the solutions that defined the treatments: 0; 0.04 and 0.40 mg.L-1 Cu++ replaced the initial solution until collection at 16 DAP. There was morphological alteration in the roots submitted to the treatments. Inhibition of root growth was evident and there was no branching. There was a significant difference between doses when electrical conductivity (EC) and pH were analyzed. However, at the highest dose offered, 0.40 mg.L-1 Cu++ (treatment 2), EC did not change until 16 DAP. Plant growth in treatment 2 was compromised. Depending on the treatment, the plant may have tolerated lower doses, but could not resist the damage caused by toxicity at a tenfold higher level.

References

Alleoni, L. R. F., Iglesias, C. S. M., Mello, S. de C., Camargo, O. A. de, Casagrande, J. C. & Lavorenti, N. A. (2005) Atributos do solo relacionados à adsorção de cádmio e cobre em solos tropicais. Acta Sci. Agron. 27(4), 729-737

Bernert, M. R., Eschemback, V., Jadoski, S. O., Santos Lima, A. D., & Pott, C. A. (2015). Características do pH e condutividade elétrica no manejo de fertirrigação. Brazilian Journal of Applied Technology for Agricultural Science/Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 8(1), 80-87.

Bon, A. F. Doua, S. A., Banakeng, L. A., Narke, C., Chouto, S. e Ndam, A. M. (2020) Contribution of a geostatistical model of electrical conductivity in the assessment of the water pollution index of the Quaternary aquifer of the Lake Chad basin (Kousseri-Cameroon). Arabian Journal of Geosciences. 13: 170, https://doi.org/10.1007/s12517-020-5142-1

Bowers, K e Srai, S K S (2018) The trafficking of metal ion transporters of the Zrt- and Irt-like protein family. Willey Traffic. 19:813-822. DOI 10.1111/tra.12602

Briceño, J, Tonato, E, Silva, M, Paredes, M e Armado, A (2020) Evaluación del contenido de metales em suelos y tejidos comestibles de Allium fistulosum L. cultivado em zonas cercanas al volcán Tungurahua. La Granja: Revista de Ciencias de la vida 32(2): 114-126.

Bueno, A. M., Flores, R. A., Andrade, A. F. de, Pessoa-de Souza, M. A., Pedreira, N. G., Collier, L. S. & Abdala, K. de O., Mesquita, M., Santos, G. G. (2021) Grain yield and physiological parameters of gas exchange in common bean as a function of copper fertilization. Research, Society and Development, 10(4), e42710414234

Ferreira de Campos, R. F., Oliveira, L. P. e Bianca Schveitzer, B. (2017) Fitorremediação do cobre em mudas de Pínus taeda inoculadas com fungos ectomicorrizicos. Revista Brasileira de Geografia Física. 10(3), 690-698

Gil, A. C. (2008) Como elaborar projeto de pesquisa. 4ª edição, São Paulo: Atlas.

Gonzaga, M., Matias, M., Andrade, K., Jesus, A., Cunha, G., Andrade, R., & Santos, J. (2020). Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere (Oxford), 240, 124828.

Jamovi (2020) The jamovi project 2020. jamovi. (Version 1.2) [Computer Software]. Acessado em https://www.jamovi.org.

Janicka-Russak, M., Kabala, K. & Burzyʼnski, M (2012) Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. Journal of Experimental Botany, 63( 2), 695–709, doi:10.1093/jxb/err313

Labudda, M., Dziurka, K., Fidler, J., Gietler, M., Rybarczyk-Pło ´nska, A., Nykiel, M., Prabucka, B.; Morkunas, I. & Muszy ´nska, E. (2022) The Alleviation of Metal Stress Nuisance for Plants—A Review of Promising Solutions in the Face of Environmental Challenges. Plants, 11, 2544. https:// doi.org/10.3390/plants11192544

Martins, R.F., Martins, D.A.A., Costa, L.A.C., Matencio, T., Paniago, R.M. e Montoro, L.A. (2020) Copper hexacyanoferrate as cathode material for hydrogen peroxide fuel cell. International Journal of Hydrogen Energy, 47: 25708-25718

Martins,V., Hanana, M., Hernâni, E. B. & Gerós, H. (2012) Copper Transport and Compartmentation in Grape Cells, Plant and Cell Physiology, 53(11), 1866–1880, https://doi.org/10.1093/pcp/pcs125

Messias, J. B., de Brito, R. L., de Aquino Beltrão, G. T., de Oliveira Messias, I. M., Florêncio, M. S., de Araújo Luz, B. R., & da Silva Filho, J. F. (2021). Citogenotoxicidade e mutagenicidade do sulfato de cobre em diferentes variedades de Allium cepa linn Cytogenotoxicity and mutagenicity of copper sulphate in different varieties of Allium cepa linn. Brazilian Journal of Development, 7(9), 88231-88244.

Mir, A.R.; Alam, P.& Hayat, S.(2022) Auxin regulates growth, photosynthetic efficiency and mitigates copper induced toxicity via modulation of nutrient status, sugar metabolism and antioxidant potential in Brassica juncea. Plant Physiol. Biochem. 185, 244–259.

Mishra, A., Shukla, D., Vaghela, K. & Saraf M (2019) Copper: Its biological role and toxicity. J Indian Bot Soc 98:26–35

Nazir F., Hussain, A. & Fariduddin, Q (2019) Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, Volume 230, 544-558

Palácio S M, Cunha M B C, Espinoza-Quiñones F R & Nogueira D A (2013) Toxicidade de metais em soluções aquosas: um bioensaio para sala de aula. Química Nova na Escola, 35(2), 79-83

Pereira A. S., Shitsuka, D. M., Parreira, F. J. & Ricardo Shitsuka, R.. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Seifi, M. R., Alimardani, R., & Sharifi, A. (2010). How can soil electrical conductivity measurements control soil pollution? Research Journal of Environmental and Earth Sciences, 2(4), 235-238.

Shabbir, Z. Sardar, A., Shabbir, A. Abbas,G. Shamshad, S., Khalid, S., Ghulam-Murtaza, Dumat, N. C. & Shahid, M. (2020) Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment, Chemosphere, 259, 127436-127436

Shakir, W. M, Kadim, W. H. & Hazz’a, M. A. (2011) Top soil layer equi-electrical conductivity and pollution with salts mapping for a region located within Baghdad city. Baghdad Science Journal, 8:2, 295-303.

Shruthi, S. N Shyleshchandran, M,, Mahesh-Mohan, S. & Ramasamy, E.V. (2018) Distribution of priority pollutants in the sediment of Vembanad Estuary, Peninsular India. Marine Pollution Bulletin, Volume 133, 294-303

Zhang, D., Liu, X., Ma, J., Yang, H., Zhang & W. Li, C. (2019) Genotypic differences and glutathione metabolism response in wheat exposed to copper. Environmental and Experimental Botany,157, 250-259

Zhang, J, Tian, X, Chen, W, Geng, Y & Wilson, J (2022) Measuring environmental impacts from primary and secondary copper production under the upgraded technologies in key Chinese enterprises. Environmental Impact Assessment Review 96: 1-9

Published

28/10/2022

How to Cite

SILVA, G. M.; OLIVEIRA, I. do N.; FERNANDES, M. C. de C.; GARRIDO, F. de S. R. G. . Physicochemical patterns of copper toxicity in Allium cepa roots. Research, Society and Development, [S. l.], v. 11, n. 14, p. e327111436285, 2022. DOI: 10.33448/rsd-v11i14.36285. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36285. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences