Liquid and peat inoculant, containing Azospirillum brasilense applied via seeds, is efficient in promoting growth and productivity in maize
DOI:
https://doi.org/10.33448/rsd-v11i14.36331Keywords:
Zea mays L.; Liquid and peaty inoculant; Plant growth promotion; Nitrogen fertilization; FBN; Productivity increase.Abstract
It evaluated the performance of the liquid and peaty inoculant with (Azospirillum brasilense (Ab-V5 and Ab-V6), and nitrogen fertilization. Eight trials were carried out (February to August 2019), in four areas in the state of Paraná, in blocks at the random, with 7 treatments and 4 replications: There were four trials with liquid inoculant: T1 – control; T2 – 50% nitrogen dose; T3 – 100% nitrogen dose; T4 – 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 100 mL/60,000 seeds; T5 - 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 150 mL/60,000 seeds; T6 - 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 150 mL/60,000 seeds; T7 - 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 200 mL/60,000 seeds. Four trials with peaty inoculant: T1 – control; T2 – 50% nitrogen dose; T3 – 100% nitrogen dose; T4 – 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 100 g/60,000 seeds; T5 - 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 150 g/60,000 seeds; T6 - 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 150 g/60,000 seeds; T7 - 50% of nitrogen fertilization and inoculation of seeds with registered pattern, 200 g/60,000 seeds. The results confirm the agronomic efficiency of the liquid and peaty inoculants in maize, when used at a dose of 100 mL or 100 g/60,000 seeds, with half of the nitrogen fertilization recommended for the crop. With these dosages, yields were obtained significantly higher than the controls and treatments that received half the dose of nitrogen fertilizer without seed inoculation, being statistically similar to treatments with total nitrogen fertilization, to the standard inoculant.
References
Alen’kina, S. A. & Nikitina, V. E. (2010). Azospirillum lectin – induced changes in the contente of nitric oxide in wheat seedling roots. Journal of Stress Physiology & Biochemistry. 6(4), 126-34.
Alves, G. C., Sobral, L. F. & Reis, V. M. (2020). Grain yield of maize inoculated with diazotrophic bacteria with the application of nitrogen fertilizer. Revista Caatinga, 33 (3), 644 – 652.
Arshad, M., Saleem, M. & Hussain, S. (2007). Perspectives of bacterial ACC deaminase in phytoreme-diation. Trends Biotechnol, 25, 356-62.
Baldani, J. I. & Baldani, V. L. D. (2005). History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciências, 77, 549-79.
Bashan, Y., Holguin, G. & De-Bashan, L. E. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003) – Review/Synthese, Canadian Journal of Microbiology, 50, 521-77.
Blaha, D., Prigent-Combaret, C., Mirza, M. S. & Moenne-Loccoz, Y. (2006). Phylogeny of the 1-amino-cyclopropane-1-carboxylic acid deaminase encoding gene acdS in phytobeneficial and patho-genic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol, 56, 455-70.
Cassán, F., Maiale, S., Masciarelli, O., Luna, A. V. V. & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 45(1), 12-9.
Cassán, F. D, Okon, Y., Creus, C. M. (2015). Handbook for azospirillum: Technical issues and protocols. Handb Azospirillum. Tech Issues Protoc.1–514.
Creus, C. M., Graziano, M., Casanovas, E. M., Pereyra, M. A., Simontacchi, M., Puntarulo, S., Barassi, C. A. & Lamattina, L. Nitric oxide is involved prodution by Azospirillum brasilense¬-induced lateral root formation in tomato. Planta, 221(2), 297-3.
Cruz, C. D (2006). Programa GENES: biometria. Viçosa: UFV, 382.
Döbereiner, J., Baldani, V. L. D. & Baldani, J. I (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Brasília: Embrapa-SPI, 60.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2013). Sistema brasileiro de classificação de solos. 3.ed. Brasília, Embrapa, 353.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2009). Manual de análises químicas de solos, plantas e fertilizantes / editor técnico, SILVA, F. C. - 2. ed. rev. ampl. - Brasília, DF: Embrapa Informação Tecnológica, 627.
Fritsche-Neto, R., Vieira, R. A., Scapim, C. A. & Miranda, G. V. (2012). Updating the ranking of the coefficients of variation from maize experiments. Acta Sci., Agron. 34(1) 99-1.
Glick, B. R. (2015). Beneficial Plant - Bacterial Interactions [Internet]. Cham: Springer International Publishing 248.
Glick BR. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica (Cairo) [Internet]. 1–15.
Hamdia, M. A., Shaddad, M. A. K. & Doaa, M. M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation, 44(2), 165-74.
Huergo, L. F., Monteiro, R. A., Bonatto, A. C., Rigo, L. U., Steffens, M. B. R., Cruz, L. M., Chubatsu, L. S., Souza, E. M., Pedrosa, F. O. (2008). Regulation of nitrogen fixation in Azospirillum brasilense. In: Cassán, F. D., Salamone, I. G. de (Eds.). Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. 1. ed. Buenos Aires: Asociación Argentina de Microbiologia, 17-8.
Hungria, M., Campo, R. J., Souza, E. M. & Pedrosa, P. O. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331, 413-25.
Köppen, W. & Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes. Wall-map 150cmx200cm
Masciarelli, O., Urbani, L., Reinoso, H. & Luna, V. (2013). Alternative mechanism for the evaluatin of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. Journal of Microbiology, 51(5), 590-97.
Moreno, A. L., Kusdra, J. F. & Picazevicz, A. A. C. (2021). Rhizobacteria inoculation in maize associated with nitrogen and zinc fertilization at sowing. Revista Brasileira de Engenharia Agrícola e Ambiental, 25 (2), 96-100.
Oliveira, O. H., Ceccon, G., Capristo, D. P., achinelli, R. & Guimarães, A. G. (2021). Azospirillum brasilense in corn grown single and intercropped with Urochloa in two contrasting soils. Pesquisa Agropecuária Brasileira, 57, e02729.
Perrig, D., Boiero, M. L., Masciarelli, O. A., Penna, C., Cassán, F. D. & Luna, M. V. (2007). Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied and environmental microbiology, 75(5), 1143-50.
Radwan, T. E. S. E. D., Mohamed, A. K. & Reis, V. M. (2004). Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz. Pesquisa Agropecuária Brasileira, 39(10). 987-94.
Rodriguez, H., Gonzalez, T. & Goire, I. (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, 91(11), 552-55.
Steenhoudt, O. & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects FEMS Microbiology Reviews, 11.
Taiz, L. & Zeiger, E. 2009. Fisiologia vegetal. 4th ed. Porto Alegre: Artmed.
Tien, T. M., Gaskins, M. H. & Hubbell, D. H. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Applied and Environmental Microbiology, 37(5), 1016-24.
Zhu, J., Brown, K. M. & Lynch, J. P. (2010). Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell and Environment, 33, 740-49.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vandeir Francisco Guimarães; Jeferson Klein; Débora Kestring Klein
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.