Measuring the solar reflectance index for the soil surface

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36444

Keywords:

Solar radiation; Photovoltaics; Albedo.

Abstract

The study of solar reflectance and therefore the albedo is essential for bifacial photovoltaic systems to estimate their performance. To meet this need, two pyranometers were installed, one observing the direct and the other the reflected solar radiation, in order to obtain data on the albedo of the ground during the experimental activity. The albedo of the ground surface is an important factor in the cost-benefit ratio of a bifacial photovoltaic system. The measured data sets include albedo time series in the monthly and hourly period, for the period 2022. Preliminary results indicated for a typical soil, Eutrophic Red Latosol, which presents a clayey to moderate texture, an albedo value of 0.15 with a measurement uncertainty of ±0.02. The data aims to facilitate the understanding of albedo values and the characteristics required, both for the use in a bifacial photovoltaic project installed on site, for its future financial analysis, and to better estimate the performance and reduce the risk of system deployment.

References

ASTM E1918-16. (2016). Standard Test Method for Measuring Solar Reflectance of horizontal and low-slope surface in the field, ASTM International, West Conshohocken, PA, Retrieved Oct 22, 2022, from https://www.astm.org/e1918-21.html

Bouchakour, S. et al. (2020). Monitoring, modelling and simulation of bifacial PV modules over normal and high albedos, International Conference on Renewable Energy Research and Application, 9, 252-256. doi:10.1109/ICRERA49962.2020.9242869

Chaouki G., Fahad F. A., Oussama R, & Abdul K. H. (2021). Sensitivity analysis of design parameters and power gain correlations of bi-facial solar PV system using response surface methodology. Solar Energy, 223, 44-53 doi:10.1016/j.solener.2021.05.024.

Chiodetti, M., et al. (2016). PV bifacial yield simulation with a variable albedo model. European Photovoltaic Solar Energy Conference, 5(4), 1449-1455, Retrieved from https://www.researchgate.net/publication/338370497

Corrêa, M. de P., & Ceballos, J. C. (2008). UVB surface albedo measurements using biometers. Revista Brasileira De Geofísica, 26, (4), 411-416. Retrieved from https://www.scielo.br/j/rbg/a/98BNzSBYtyyw8YLPxVM9KTL/?lang=en

Costanzini, S., Ferrari, C., Despini F., & Muscio, A. (2021). Standard test methods for rating of solar reflectance of built-up surfaces and potential use of satellite remote sensors. Energies. 14(20), 6626-6650. doi:10.3390/en14206626

Fabre, S., Briottet, X., & Lesaignoux, A. (2015). Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain. Sensors, 15(2), 3262-3281. doi: 10.3390/s150203262

Garcia, J. L., Casado, A., & Sample, T. (2019). Electrical performance of bifacial silicon PV modules under different indoor mounting configurations affecting the rear reflected irradiance. Solar Energy, 177, 471-482. https://doi.org/10.1016/j.solener.2018.11.051

Gul, M., Kotak, Y., Muneer, T., & Ivanova, S. (2018). Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies. Energies, 11(11), 2881-2898. doi:10.3390/en11112881

Harrison, R. G. (2014). Meteorological measurements and instrumentation. Chichester, UK: Wiley.

Jouttijärvi, S., Lobaccaro G., Kamppinen A, & Miettunen, K. (2022). Benefits of bifacial solar cells combined with low voltage power grids at high latitudes. Renewable and Sustainable Energy Reviews, 161, 112354-112370. doi.org/10.1016/j.rser.2022.11235

Kreinin, L., Karsenty, A., Grobgeld, D., & Eisenberg, N. (2016). PV systems based on bifacial modules: Performance simulation vs. design factors, IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2688-2691. doi: 10.1109/PVSC.2016.7750138.

Lave, M. S. (2015). Albedo and Diffuse POA Measurements to Evaluate Transposition Model Uncertainty., United States. Retrieved Oct 23, 2022, from https://www.osti.gov/servlets/purl/1529054

Loshelder, J. (2020). Soil Moisture Content Determination by Means of the Electromagnetic Spectrum. Civil Engineering Undergraduate Honors Theses, Retrieved Oct 23, 2022, from https://scholarworks.uark.edu/cveguht/ 64

Maestri, A., Marinoski, D. L., Lamberts, R., & Guths, S. (2021). Measurement of solar reflectance of roofs: Effect of paint aging and a discussion on ASTM E1918 standard. Energy and Buildings, 245, 111057. doi:10.1016/j.enbuild.2021.111057

Marion, B.; et al. Performance Parameters for Grid-Connected PV Systems. (2005). IEEE Photovoltaics Specialists Conference and Exhibition, Springfield. 31. 1601-1606. doi: 10.1109/PVSC.2005.1488451.

Ng, E, (2001). Daylighting Simulation of Heavily Obstructed Residential Buildings in Hong Kong. International Building Performance Simulation Association Conference, Brazil, Anais […] Rio de Janeiro. 2, 1215-1222. Retrieved from http://www.ibpsa.org/proceedings/BS2001/BS01_1215_1222.pdf

NREL-National Renewable Energy Laboratory, (2020). bifiPV2020 Bifacial Workshop: A Technology Overview. Retrieved from https://www.nrel.gov/docs/fy21osti/77817.pdf

Qin, Y., & He, H. (2017). A new simplified method for measuring the albedo of limited extent targets. Solar Energy, 157, 1047–1055. doi:10.1016/j.solener.2017.09.027

Russell T. C. R., Saive R., Augusto A, Bowden SG, & Atwater HA, (2017). A influência do albedo espectral em células solares bifaciais: um estudo teórico e experimental. IEEE J Photovolt, 7, pp. 1611-1618, 10.1109 / JPHOTOV.2017.2756068

Sreenath, S., Sudhakar, K., & Yusop, A. F., (2021). Performance assessment of conceptual bifacial solar PV system in varying albedo conditions. IOP Conference Series: Materials Science and Engineering, 1078(1), 012033-0122042. doi.org/10.1088/1757-899x/1078/1/012033

Stein, J. S., Riley, D., Lave, M., Hansen, C, Deline C., & Toor, F. (2017). Outdoor field performance from bifacial photovoltaic modules and systems. IEEE Photovoltaic Specialist Conference (PVSC), 44. p. 3184-3189, 2017, DOI: 10.1109/PVSC.2017.8366042.

Sun, X., Khan, M. R., Deline, C, & Alam, M. A. (2018). Optimization and performance of bifacial solar modules: A global perspective. Applied Energy, 212, 1601–1610. doi:10.1016/j.apenergy. 2017.12.041

Takebayashi, H., Miki, K., Sakai, K., Murata, Y., Matsumoto, T., Wada, S., & Aoyama, T. (2016). Experimental examination of solar reflectance of high-reflectance paint in Japan with natural and accelerated aging. Energy and Buildings, 114, 173-179.

Thurston, C. W. (2019). NREL Builds first solar database for bifacial albedo. Retrieved. Oct 22, 2022: https://cleantechnica.com/2019/02/18/nrel-builds-first-solar-database-for-bifacial-albedo/

Tina, G. M., Bontempo SF, Merlo, L., & Bizzarri, F. (2021). Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants. Applied Energy, 281, 116084.

Published

31/10/2022

How to Cite

FERRUZZI, Y. .; SOUZA, S. N. M. de; GNOATTO, E. .; NOGUEIRA, C. E. C. .; FISCHBORN, M. . Measuring the solar reflectance index for the soil surface. Research, Society and Development, [S. l.], v. 11, n. 14, p. e413111436444, 2022. DOI: 10.33448/rsd-v11i14.36444. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36444. Acesso em: 8 dec. 2022.

Issue

Section

Engineerings