Potential of poultry residual fat biofuels from thermo-catalytic cracking





Bio-oil; Thermo-catalytic cracking; Residual poultry fat; Biofuels.


Biofuels have been occupying space in the fuel market as a renewable substitute for petrol fuels. The thermal and/or thermo-catalytic cracking using triglyceride biomass stands out among the biofuel production processes. Cracking processes result in the production of coke, bio-oil and non-condensable gases. The quantification of each product in a cracking process is directly linked to operational conditions. This project focuses on the use of residual fat from the poultry processing industry, converting it into biofuel so that it can be used in the industry itself as a source of energy. The quality of the products generated are linked to the raw material used, as well as the conditions used in the cracking process. One way to improve the characteristics of the bio-oil produced can be achieved with the use of a catalyst together with thermal cracking. The literature has shown that in thermo-catalytic cracking, there is lower yield in bio-oil, but with some properties, such as acidity and viscosity closer to the value required by legislation for use in engines. This project aims to add value to an industrial waste, by converting this waste into biofuel using thermo-catalytic cracking, with the possibility of being used in the industry itself, as well as investigating the optimization of the process to improve the quality of bio-oil. The yield of the liquid fraction was around 67 % with an acid value of 58.74 mg KOH/g sample.


Almeida, H. S., Li, K., Ding, H., & Zhu, X. (2016) Production of biofuels by thermal catalytic cracking of scum from grease traps in pilot scale. Journal of Analytical and Applied Pyrolysis, 118, 20-33. https://doi.org/10.1016/j.fuel.2017.09.106

Alvarez, J., Amutio, M., Lopez, G., Bilbao, J., & Olazar, M. (2015) Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. Fuel, 159, 810-818. https://doi.org/10.1016/j.fuel.2015.07.039

Beims, R.F., Botton, V., Ender, L., Scharf, D. R., Simionatto, E. L., Meier, H. F., & Wiggers, V. R. (2018a) Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat. Data in Brief, 17, 442-451. https://doi.org/10.1016/j.dib.2018.01.054

Beims, R.F., Botton, V., Ender, L., Scharf, D. R., Simionatto, E. L., Meier, H. F., & Wiggers, V. R. (2018b) Effect of degree of triglyceride unsaturation on aromatics content in bio-oil. Fuel, 217, 175-184. https://doi.org/10.1016/j.fuel.2017.12.109

Botton, V., Scharf, D. R., Simionatto, E. L., Wiggers, V. R., Ender, L., Meier, H. F., & Barros, A. A. C. (2012) Craqueamento termo-catalítico da mistura de óleo de fritura usado-lodo de estamparia têxtil para a produção de óleo com baixo índice de acidez. Química Nova, 35(4), 677-682. https://doi.org/10.1590/S0100-40422012000400004

Brasil (2020) Resenha Energética Brasileira. Ministério de Minas e Energia. Brasília, 32 p.

Chiarello, L. M., Porto, T. G., Barros, A. A. C., Simionatto, E. L., Botton, V., & Wiggers, V. R. (2020) Boosting an Oil Refinery into a Biorefinery. Angolan Mineral, Oil & Gas Journal, 1 (1), 1–5. https://doi.org/10.47444/amogj.v1i1.1

Fahim, M.A., Al-Sahhaf, T.A., & Elkilani, A.S (2012) Introdução ao refino de petróleo. Rio de Janeiro: Elsevier, 457 p.

Hanafi, S. A., Elmelawy, M. S., Shalaby, N. H., El-Syed, H. A., Eshaq, G., & Mostafa, M. S. (2016) Hydrocracking of waste chicken fat as a cost effective feedstock for renewable fuel production: A kinetic study. Egyptian Journal of Petroleum, 25(4), 531-537. https://doi.org/10.1016/j.ejpe.2015.11.006

Hassen-Trabelsi, A. B., Kraiem, t., Naoui, S., & Belayouni, H. (2013) Pyrolysis of waste animal fats in a fixedbed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34 (1), 210-218. https://doi.org/10.1016/j.wasman.2013.09.019

Hilten, R. N., Bibens, B., P., Kastner, J. R., & Das, K. C. (2010a) In-Line Esterification of Pyrolysis Vapor with Ethanol Improves Bio-oil Quality. Energy & Fuels, Athens, 24 (1), 673-682. https://doi.org/10.1021/ef900838g

Hilten, R., Speir, R., Kastner, J., & Das, K. C. (2010b) Production of fuel from the catalytic cracking of pyrolyzed poultry DAF skimmings. Journal of Analytical and Applied Pyrolysis, 88(1), 30-38. https://doi.org/10.1016/j.jaap.2010.02.007

Idem, R.O., Katikaneni, S. P. R., & Bakhshi, N. N. (1997) Catalytic conversion of canola oil to fuels and chemicals: Roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Processing Technology, 51(1-2), 101-125. https://doi.org/10.1016/S0378-3820(96)01085-5

Ito, T., Sakurai, Y., Kakuta, Y., Sugano, M. & Hirano, K. (2012) Biodiesel production from waste animal fats using pyrolysis method. Fuel Processing Technology, 94 (1), 47-52. https://doi.org/10.1016/j.fuproc.2011.10.004

Jayasinghe, P., & Hawboldt, K. (2011) A review of bio-oils from waste biomass: Focus on fish processing waste. Renewable and Sustainable Energy Reviews, 16(1), 798-821. https://doi.org/10.1016/j.rser.2011.09.005

Kirubakaran, M., & Selvan, V. A. M. (2018) A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews, 82 (1), 390-401. https://doi.org/10.1016/j.rser.2017.09.039

Liu, Y., Lotero, E., Goodwin Jr., J. G., & Mo, X. (2007) Transesterification of poultry fat with methanol using Mg¿Al hydrotalcite derived catalysts. Applied Catalysis A: General, 331, 138-148. https://doi.org/10.1016/j.apcata.2007.07.038

Park, H. J., Heo, H. S., Park, Y., Yim, J., Jeon, J., Park, J., Ryu, C., & Kim, S. (2010) Clean bio-oil production from fast pyrolysis of sewage sludge: Effects of reaction conditions and metal oxide catalysts. Bioresource Technology, 101 (1), 83-85. https://doi.org/10.1016/j.biortech.2009.06.103

Peng, Y., Xu, Y., Dearn, K. D., Geng, J., & Hu, X. (2018) Novel in situ tribo-catalysis for improved tribological properties of bio-oil model compound. Fuel, 212, 546-553. https://doi.org/10.1016/j.fuel.2017.10.080

Ramos, E.S., Zimmermann, D., Beims, R. F., Chiarello, L. M., Botton, V., Simionatto, E. L., & Wiggers, V. R. (2020) Evaluation of ethylic and methylic esterification reactions to reduce acidity of crude bio‐oil. Environmental Progress & Sustainable Energy, 39(5), e13441. https://doi.org/10.1002/ep.13441

Sadrameli, S.M. (2016) Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review. Fuel, 173, 285-297. https://doi.org/10.1016/j.fuel.2016.01.047

Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., & Pryde, E. H. (1988) Diesel fuel from thermal-decomposition of soybean oil. Journal of the American Oil Chemists' Society, 65, 1781-1786. https://doi.org/10.1007/BF02542382

Smith, J., Garcia-Perez, M., & Das, K. C. (2009) Producing fuel and specialty chemicals from the slow pyrolysis of poultry DAF skimmings. Journal of Analytical and Applied Pyrolysis, 86(1), 115-121. https://doi.org/10.1016/j.jaap.2009.04.010

Stedile, T., Ender, L., Meier, H. F., Simionatto, E. L., & Wiggers, V. R. (2015) Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources. Renewable and Sustainable Energy Reviews, 50, 92-108. https://doi.org/10.1016/j.rser.2015.04.080

Vechi, T. (2018) Produção de hidrocarbonetos renováveis por craqueamento térmico e termo-catalítico de gordura residual de indústria de processamento de aves. [Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Química, Universidade Regional de Blumenau (FURB), Blumenau/Santa Catarina – Brazil], 100 p.

Weerachanchai, P., Tangsathitkulchai , C., & Tangsathitkulchai, M. (2012) Effect of reaction conditions on the catalytic esterification of bio-oil. Korean Journal of Chemical Engineering, 29, 182-189. https://doi.org/10.1007/s11814-011-0161-y

Wienhage, G. H., Ramos, E. S., Chiarello, L. M., Botton, V., & Wiggers, V. R. (2021) Acidity Reduction of Bio-Oil by Methylic Esterification Reactions. Angolan Mineral, Oil & Gas Journal, 2(2), 21–27. https://doi.org/10.47444/amogj.v2i2.4

Wiggers, V.R., Meier, H. F., Wisniewski Jr., A., Chivanga Barros, A. A., & Wolf Maciel, M. R. (2009a) Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study. Bioresource Technology, 100, 6570-6577. https://doi.org/10.1016/j.biortech.2009.07.059

Wiggers, V.R., Wisniewski Jr., A., Madureira, L. A. S., Chivanga Barros, A. A., & Meier, H. F. (2009b) Biofuels from waste fish oil pyrolysis: Continuous production in a pilot plant. Fuel, 88 (11), 2135-2141. https://doi.org/10.1016/j.fuel.2009.02.006

Wiggers, V.R., Zonta, G. R., França, A. P., Scharf, D. R., Simionatto, E. L., Ender, L., & Meier, H. F. (2013) Challenges associated with choosing operational conditions for triglyceride thermal cracking aiming to improve biofuel quality. Fuel, 107, 601-608. https://doi.org/10.1016/j.fuel.2012.11.011

Xu, J., Jiang, J., Sun, Y., & Chen, J. (2010) Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Bioresource Technology, 101 (24), 9803-9806. https://doi.org/10.1016/j.biortech.2010.06.147

Xu, J., Jiang, J., & Zhao, J., (2016) Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renewable and Sustainable Energy Reviews, 58, 331-340. https://doi.org/10.1016/j.rser.2015.12.315

Zhu, L., Li, K., Ding, H., & Zhu, X. (2018) Studying on properties of bio-oil by adding blended additive during aging. Fuel, 211, 704-711. https://doi.org/10.1016/j.fuel.2017.09.106



How to Cite

VECHI, T.; MASCHIO , C. da S. .; KLEIS, J. .; CHIARELLO, L. M.; BOTTON, V.; WIGGERS , V. R. .; ENDER, L. Potential of poultry residual fat biofuels from thermo-catalytic cracking. Research, Society and Development, [S. l.], v. 11, n. 15, p. e323111536458, 2022. DOI: 10.33448/rsd-v11i15.36458. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36458. Acesso em: 31 jan. 2023.