Potencial de biocombustíveis de gordura residual de aves a partir de craqueamento termo-catalítico
DOI:
https://doi.org/10.33448/rsd-v11i15.36458Palavras-chave:
Bio-óleo; Craqueamento termo-catalítico; Gordura residual de aves; Biocombustíveis.Resumo
Os biocombustíveis vêm ocupando espaço no mercado de combustíveis, como substituto renovável aos combustíveis fósseis. O craqueamento térmico e/ou termo-catalítico de biomassa triglicérica tem destaque entre os processos de produção de biocombustíveis. O processo de craqueamento tem como produtos coque, bio-óleo e gases não condensáveis. A quantificação de cada produto num processo de craqueamento está diretamente ligada às condições operacionais. Este projeto tem como foco o uso de gorduras residuais de indústria de processamento de aves, convertê-la em biocombustível para que possa ser utilizada na própria indústria como fonte de energia. A qualidade e características dos produtos gerados estão ligadas à matéria-prima utilizada, assim como às condições empregadas do processo de craqueamento. Uma forma de melhorar as características do bio-óleo produzido pode ser alcançada com a utilização de catalisador junto ao craqueamento térmico. A literatura tem mostrado que no craqueamento termo-catalítico, tem-se menor rendimento em bio-óleo, porém com algumas propriedades, como acidez e a viscosidade mais próximas ao valor exigido pela legislação para a utilização em motores. Este projeto tem como objetivo agregar valor a um resíduo industrial, pela conversão deste resíduo em biocombustível empregando craqueamento termo-catalítico, com possibilidade de ser utilizado na própria indústria. O rendimento da fração líquida foi em torno de 67 % com acidez de 58,74 mg KOH/g amostra.
Referências
Almeida, H. S., Li, K., Ding, H., & Zhu, X. (2016) Production of biofuels by thermal catalytic cracking of scum from grease traps in pilot scale. Journal of Analytical and Applied Pyrolysis, 118, 20-33. https://doi.org/10.1016/j.fuel.2017.09.106
Alvarez, J., Amutio, M., Lopez, G., Bilbao, J., & Olazar, M. (2015) Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. Fuel, 159, 810-818. https://doi.org/10.1016/j.fuel.2015.07.039
Beims, R.F., Botton, V., Ender, L., Scharf, D. R., Simionatto, E. L., Meier, H. F., & Wiggers, V. R. (2018a) Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat. Data in Brief, 17, 442-451. https://doi.org/10.1016/j.dib.2018.01.054
Beims, R.F., Botton, V., Ender, L., Scharf, D. R., Simionatto, E. L., Meier, H. F., & Wiggers, V. R. (2018b) Effect of degree of triglyceride unsaturation on aromatics content in bio-oil. Fuel, 217, 175-184. https://doi.org/10.1016/j.fuel.2017.12.109
Botton, V., Scharf, D. R., Simionatto, E. L., Wiggers, V. R., Ender, L., Meier, H. F., & Barros, A. A. C. (2012) Craqueamento termo-catalítico da mistura de óleo de fritura usado-lodo de estamparia têxtil para a produção de óleo com baixo índice de acidez. Química Nova, 35(4), 677-682. https://doi.org/10.1590/S0100-40422012000400004
Brasil (2020) Resenha Energética Brasileira. Ministério de Minas e Energia. Brasília, 32 p.
Chiarello, L. M., Porto, T. G., Barros, A. A. C., Simionatto, E. L., Botton, V., & Wiggers, V. R. (2020) Boosting an Oil Refinery into a Biorefinery. Angolan Mineral, Oil & Gas Journal, 1 (1), 1–5. https://doi.org/10.47444/amogj.v1i1.1
Fahim, M.A., Al-Sahhaf, T.A., & Elkilani, A.S (2012) Introdução ao refino de petróleo. Rio de Janeiro: Elsevier, 457 p.
Hanafi, S. A., Elmelawy, M. S., Shalaby, N. H., El-Syed, H. A., Eshaq, G., & Mostafa, M. S. (2016) Hydrocracking of waste chicken fat as a cost effective feedstock for renewable fuel production: A kinetic study. Egyptian Journal of Petroleum, 25(4), 531-537. https://doi.org/10.1016/j.ejpe.2015.11.006
Hassen-Trabelsi, A. B., Kraiem, t., Naoui, S., & Belayouni, H. (2013) Pyrolysis of waste animal fats in a fixedbed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34 (1), 210-218. https://doi.org/10.1016/j.wasman.2013.09.019
Hilten, R. N., Bibens, B., P., Kastner, J. R., & Das, K. C. (2010a) In-Line Esterification of Pyrolysis Vapor with Ethanol Improves Bio-oil Quality. Energy & Fuels, Athens, 24 (1), 673-682. https://doi.org/10.1021/ef900838g
Hilten, R., Speir, R., Kastner, J., & Das, K. C. (2010b) Production of fuel from the catalytic cracking of pyrolyzed poultry DAF skimmings. Journal of Analytical and Applied Pyrolysis, 88(1), 30-38. https://doi.org/10.1016/j.jaap.2010.02.007
Idem, R.O., Katikaneni, S. P. R., & Bakhshi, N. N. (1997) Catalytic conversion of canola oil to fuels and chemicals: Roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Processing Technology, 51(1-2), 101-125. https://doi.org/10.1016/S0378-3820(96)01085-5
Ito, T., Sakurai, Y., Kakuta, Y., Sugano, M. & Hirano, K. (2012) Biodiesel production from waste animal fats using pyrolysis method. Fuel Processing Technology, 94 (1), 47-52. https://doi.org/10.1016/j.fuproc.2011.10.004
Jayasinghe, P., & Hawboldt, K. (2011) A review of bio-oils from waste biomass: Focus on fish processing waste. Renewable and Sustainable Energy Reviews, 16(1), 798-821. https://doi.org/10.1016/j.rser.2011.09.005
Kirubakaran, M., & Selvan, V. A. M. (2018) A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews, 82 (1), 390-401. https://doi.org/10.1016/j.rser.2017.09.039
Liu, Y., Lotero, E., Goodwin Jr., J. G., & Mo, X. (2007) Transesterification of poultry fat with methanol using Mg¿Al hydrotalcite derived catalysts. Applied Catalysis A: General, 331, 138-148. https://doi.org/10.1016/j.apcata.2007.07.038
Park, H. J., Heo, H. S., Park, Y., Yim, J., Jeon, J., Park, J., Ryu, C., & Kim, S. (2010) Clean bio-oil production from fast pyrolysis of sewage sludge: Effects of reaction conditions and metal oxide catalysts. Bioresource Technology, 101 (1), 83-85. https://doi.org/10.1016/j.biortech.2009.06.103
Peng, Y., Xu, Y., Dearn, K. D., Geng, J., & Hu, X. (2018) Novel in situ tribo-catalysis for improved tribological properties of bio-oil model compound. Fuel, 212, 546-553. https://doi.org/10.1016/j.fuel.2017.10.080
Ramos, E.S., Zimmermann, D., Beims, R. F., Chiarello, L. M., Botton, V., Simionatto, E. L., & Wiggers, V. R. (2020) Evaluation of ethylic and methylic esterification reactions to reduce acidity of crude bio‐oil. Environmental Progress & Sustainable Energy, 39(5), e13441. https://doi.org/10.1002/ep.13441
Sadrameli, S.M. (2016) Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review. Fuel, 173, 285-297. https://doi.org/10.1016/j.fuel.2016.01.047
Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., & Pryde, E. H. (1988) Diesel fuel from thermal-decomposition of soybean oil. Journal of the American Oil Chemists' Society, 65, 1781-1786. https://doi.org/10.1007/BF02542382
Smith, J., Garcia-Perez, M., & Das, K. C. (2009) Producing fuel and specialty chemicals from the slow pyrolysis of poultry DAF skimmings. Journal of Analytical and Applied Pyrolysis, 86(1), 115-121. https://doi.org/10.1016/j.jaap.2009.04.010
Stedile, T., Ender, L., Meier, H. F., Simionatto, E. L., & Wiggers, V. R. (2015) Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources. Renewable and Sustainable Energy Reviews, 50, 92-108. https://doi.org/10.1016/j.rser.2015.04.080
Vechi, T. (2018) Produção de hidrocarbonetos renováveis por craqueamento térmico e termo-catalítico de gordura residual de indústria de processamento de aves. [Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Química, Universidade Regional de Blumenau (FURB), Blumenau/Santa Catarina – Brazil], 100 p.
Weerachanchai, P., Tangsathitkulchai , C., & Tangsathitkulchai, M. (2012) Effect of reaction conditions on the catalytic esterification of bio-oil. Korean Journal of Chemical Engineering, 29, 182-189. https://doi.org/10.1007/s11814-011-0161-y
Wienhage, G. H., Ramos, E. S., Chiarello, L. M., Botton, V., & Wiggers, V. R. (2021) Acidity Reduction of Bio-Oil by Methylic Esterification Reactions. Angolan Mineral, Oil & Gas Journal, 2(2), 21–27. https://doi.org/10.47444/amogj.v2i2.4
Wiggers, V.R., Meier, H. F., Wisniewski Jr., A., Chivanga Barros, A. A., & Wolf Maciel, M. R. (2009a) Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study. Bioresource Technology, 100, 6570-6577. https://doi.org/10.1016/j.biortech.2009.07.059
Wiggers, V.R., Wisniewski Jr., A., Madureira, L. A. S., Chivanga Barros, A. A., & Meier, H. F. (2009b) Biofuels from waste fish oil pyrolysis: Continuous production in a pilot plant. Fuel, 88 (11), 2135-2141. https://doi.org/10.1016/j.fuel.2009.02.006
Wiggers, V.R., Zonta, G. R., França, A. P., Scharf, D. R., Simionatto, E. L., Ender, L., & Meier, H. F. (2013) Challenges associated with choosing operational conditions for triglyceride thermal cracking aiming to improve biofuel quality. Fuel, 107, 601-608. https://doi.org/10.1016/j.fuel.2012.11.011
Xu, J., Jiang, J., Sun, Y., & Chen, J. (2010) Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Bioresource Technology, 101 (24), 9803-9806. https://doi.org/10.1016/j.biortech.2010.06.147
Xu, J., Jiang, J., & Zhao, J., (2016) Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renewable and Sustainable Energy Reviews, 58, 331-340. https://doi.org/10.1016/j.rser.2015.12.315
Zhu, L., Li, K., Ding, H., & Zhu, X. (2018) Studying on properties of bio-oil by adding blended additive during aging. Fuel, 211, 704-711. https://doi.org/10.1016/j.fuel.2017.09.106
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Thiago Vechi; Camila da Silva Maschio ; Julia Kleis; Luana Marcele Chiarello; Vanderleia Botton; Vinicyus Rodolfo Wiggers ; Laercio Ender

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.