Compatibilizers for biodegradable starch and poly (lactic acid) materials produced by thermoplastic injection




Biodegradable polymers; Citric Acid; Maleic Anhydride; 3-(trimethoxysilyl) propyl methacrylate; Mechanical properties.


Studies using starch to produce biodegradable materials have proved attractive due to its availability and low cost in relation to commercial biodegradable polymers, such as poly (lactic acid) and others. Starch-based materials do not have adequate mechanical properties for production and use on a commercial scale, requiring mixtures (blends) with other biodegradable polymers to improve these properties. However, these blends need compatibilizers due to the immiscibility between the starch and the polymer. The present work aimed to study the effect of different compatibilizers (3-(trimethoxysilyl) propyl methacrylate, citric acid, and maleic anhydride) on the functional properties of biodegradable starch and poly (lactic acid) (PLA) materials produced by extrusion and thermoplastic injection. Citric acid was considered the best compatibilizer for these materials because it improved the processability, and the materials presented properties suitable for applications where good mechanical resistance is required. In addition, the materials containing citric acid and maleic anhydride were more uniform from the morphological point of view.

Author Biographies

Bruno Matheus Simões, Universidade Estadual de Londrina

Phd Candidate for Food and Science Technology (Universidade Estadual de Londrina, Londrina, Paraná, Brazil)

Master's Degree in Food and Science Techonology (Universidade Estadual de Londrina, Londrina, Paraná, Brazil)

Department of Food Science and Technology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.

Fabio Yamashita, Universidade Estadual de Londrina

Department of Food Science and Technology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.

Fabiola Azanha de Carvalho, Universidade Estadual de Londrina

Department of Food Science and Technology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.


Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly (lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262.

ASTM. (2013). D618-13. ASTM D618-13. Standard practice for conditioning plastics for testing. ASTM Standard. ASTM International: West Conshohocken PA.

ASTM. (2014). D638 – 14. Plastics. Standard Test Method for Tensile Properties of Plastics. American Society for Testing Materials (ASTM)

Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly (lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and stability, 95, 116-125.

Cehavir, A. (2017). Fiber technology for fiber-reinforced composites. In Seydibeyoglu, M. O., Mohanty, A. K., & Misra, M. (Eds.), Glass Fibers (pp. 99-121). Woodhead Publishing, Vol 1.

Chen, X., Leiyong, Z., Xiaomei, P., Jinhui, H., Yixing, H. & Shanshan, W. (2016). Effect of different compatibilizers on the mechanical and thermal properties of starch/polypropylene blends. Journal of Applied Polymer Science. 133, 17.

Clasen, S. H., Müller, C. M., & Pires, A. T. (2015). Maleic anhydride as a compatibilizer and plasticizer in TPS/PLA blends. Journal of the Brazilian Chemical Society, 26, 1583-1590.

Duan, Q., Meng, L., Liu, H., Yu, L., Lu, K., Khalid, S., & Chen, L. (2019). One-step extrusion to minimize thermal decomposition for processing PLA-based composites. Journal of Polymers and the Environment, 27, 158-164.

González-López, M. E., Robledo-Ortíz, J. R., Manríquez-González, R., Silva-Guzmán, J. A., & Pérez-Fonseca, A. A. (2018). Polylactic acid functionalization with maleic anhydride and its use as coupling agent in natural fiber biocomposites: a review. Composite Interfaces, 25, 515-538.

Hwang, S. W., Shim, J. K., Selke, S., Soto‐Valdez, H., Rubino, M., & Auras, R. (2013). Effect of Maleic‐Anhydride Grafting on the Physical and Mechanical Properties of Poly (l‐lactic acid)/Starch Blends. Macromolecular Materials and Engineering, 298, 624-633.

Hu, Y., Wang, Q., & Tang, M. (2013). Preparation and properties of Starch-g-PLA/poly (vinyl alcohol) composite film. Carbohydrate polymers, 96, 384-388.

Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48, 270-280.

Ibrahim, N., Ab Wahab, M. K., & Ismail, H. (2017). Physical and degradation properties of polylactic acid and thermoplastic starch blends–Effect of citric acid treatment on starch structures. BioResources, 12, 3076-3087.

Jariyasakoolroj, P., & Chirachanchai, S. (2014). Silane modified starch for compatible reactive blend with poly (lactic acid). Carbohydrate polymers, 106, 255-263.

Kale, G., Auras, R., Singh, S. P., & Narayan, R. (2007). Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer testing, 26, 1049-1061.

Ke, T., & Sun, X. (2001). Effects of moisture content and heat treatment on the physical properties of starch and poly (lactic acid) blends. Journal of Applied Polymer Science, 81, 3069-3082.

Koh, J. J., Zhang, X., & He, C. (2018). Fully biodegradable Poly (lactic acid)/Starch blends: A review of toughening strategies. International Journal of biological macromolecules, 109, 99-113.

Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Filmes de amido: produção, propriedades e potencial de utilização. Semina: Ciências Agrárias, 31, 137-155.

Martin, O., & Avérous, L. (2001). Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219.

Moghaddam, M. R. A., Razavi, S. M. A., & Jahani, Y. (2018). Effects of compatibilizer and thermoplastic starch (TPS) concentration on morphological, rheological, tensile, thermal and moisture sorption properties of plasticized polylactic acid/TPS blends. Journal of Polymers and the Environment, 26, 3202-3215.

Müller, C. M., Laurindo, J. B. & Yamashita, F. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products. 33, 605-10.

Nanthananon, P., Seadan, M., Pivsa-Art, S., & Suttiruengwong, S. (2015). Enhanced crystallization of poly (lactic acid) through reactive aliphatic bisamide. In IOP Conference Series: Materials Science and Engineering, p. 012067. IOP Publishing.

Ning, W., Xingxiang, Z., Na, H., & Jianming, F. (2010). Effects of water on the properties of thermoplastic starch poly (lactic acid) blend containing citric acid. Journal of Thermoplastic Composite Materials, 23, 19-34.

Olivato, J. B., Grossmann, M. V. E., Yamashita, F., Eiras, D., & Pessan, L. A. (2012). Citric acid and maleic anhydride as compatibilizers in starch/poly (butylene adipate-co-terephthalate) blends by one-step reactive extrusion. Carbohydrate Polymers, 87, 2614-2618.

Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2018). Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. Journal of Polymers and the Environment, 26, 330-341.

Perego, G., Cella G. D. (2010). Mechanical properties. In Auras R. A., Lim L. T., Selke S. E., Tsuji H. (Ed.), Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications (pp. 141-153). John Wiley & Sons, Vol 10.

Phetwarotai, W., Potiyaraj, P., & Aht‐Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126, 162-172.

Pivsa-Art, S., Kord-Sa-Ard, J., Pivsa-Art, W., Wongpajan, R., Narongchai, O., Pavasupree, S., & Hamada, H. (2016). Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia, 89, 353-360.

Raj, A., Samuel, C., & Prashantha, K. (2020). Role of Compatibilizer in Improving the Properties of PLA/PA12 Blends. Frontiers in Materials, 7, 193.

Rigolin, T. R., Takahashi, M. C., Kondo, D. L., & Bettini, S. H. P. (2019). Compatibilizer acidity in coir-reinforced PLA composites: matrix degradation and composite properties. Journal of Polymers and the Environment, 27(5), 1096-1104.

Shirai, M. A., Zanela, J., Kunita, M. H., Pereira, G. M., Rubira, A. F., Müller, C. M. O., ... & Yamashita, F. (2018). Influence of carboxylic acids on poly (lactic acid)/thermoplastic starch biodegradable sheets produced by calendering–extrusion. Advances in Polymer Technology, 37, 2, 332-338..

Tábi, T., Sajó, I. E., Szabó, F., Luyt, A. S., & Kovács, J. G. (2010). Crystalline structure of annealed polylactic acid and its relation to processing, Express Polym. 659–668.

Taib, M. N. A. M., & Julkapli, N. M. (2019). Dimensional stability of natural fiber-based and hybrid composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 61-79). Woodhead Publishing.

Wang, N., Yu, J., Chang, P. R., & Ma, X. (2007). Influence of Citric Acid on the Properties of Glycerol‐plasticized dry Starch (DTPS) and DTPS/Poly (lactic acid) Blends. Starch‐Stärke, 59, 409-417.

Zaaba, N. F., & Ismail, H. (2019). A review on tensile and morphological properties of poly (lactic acid)(PLA)/thermoplastic starch (TPS) blends. Polymer-Plastics Technology and Materials, 58, 1945-1964.

Zhang, J. F., & Sun, X. (2004). Mechanical properties of poly (lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules, 5, 1446-1451.

Zhang, X., Espiritu, M., Bilyk, A., & Kurniawan, L. (2008). Morphological behaviour of poly (lactic acid) during hydrolytic degradation. Polymer Degradation and Stability, 93, 1964-1970.




How to Cite

SILVA, S. C. da; SIMÕES, B. M. .; YAMASHITA, F.; CARVALHO, F. A. de. Compatibilizers for biodegradable starch and poly (lactic acid) materials produced by thermoplastic injection. Research, Society and Development, [S. l.], v. 11, n. 14, p. e476111436521, 2022. DOI: 10.33448/rsd-v11i14.36521. Disponível em: Acesso em: 8 dec. 2022.



Agrarian and Biological Sciences