Automatic, accurate and robust image registration with adapted RANSAC (Random Sample Consensus) for SIFT (Scale Invariant Feature Transform) descriptor

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36631

Keywords:

Image registration; SIFT; Homography; RANSAC.

Abstract

Image registration is a common problem in computer vision with several applications which consists of finding the correct transformation between pairs of overlapping images. This work aims to present an automatic and accurate model for image registration using the SIFT descriptor and the adapted RANSAC estimation method. The registration occurs through the estimation of the homography between the pairs of images, which use the point correspondences given by the SIFT descriptor. Matches are classified using a dynamically estimated error threshold. The analysis considers the dispersion of the residual over various error thresholds and adopts the one that minimizes the dispersion and the magnitude of the error. The model is tested with 8 heterogeneous pairs of images divided into two groups: 4 pairs obtained with a professional camera and 4 pairs obtained with a common camera. Due to the high quality of the images in the first group, few iterations of the model are necessary for a good estimate of the correct homography. In the second group, the model showed that it is capable of building mosaics between pairs of images with an overlap of less than 20%, finding exact correspondences between pairs of images regardless of the acquisition method. Furthermore, it was able to handle up to 65% corruption between matches, with a total execution time of a few seconds.

Author Biographies

Kalima Pitombeira, Universidade Federal do Paraná

Mestra em Ciências Geodésicas pela Universidade Federal do Paraná, na área de Fotogrametria e Sensoriamento Remoto, concluído em 2021.1. Doutorado em andamento desde 2021.2 em Ciências Geodésicas pela Universidade Federal do Paraná, na área de Fotogrametria e Sensoriamento Remoto.

Jorge Centeno, Universidade Federal do Paraná

Professor titular do departamento de Geomática da Universidade Federal do Paraná (UFPR).

Paulo Rodrigo Simões, Universidade Federal do Paraná

Doutorando em Ciências Geodésicas (Departamento de Geomática). Mestre em Geociências (Departamento de Geologia e Recursos Minerais - DGRN). Licenciado em História (Departamento de História).  

References

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

Belo, F. A. W. (2006). Desenvolvimento de Algoritmos de Exploração e Mapeamento Visual para Robôs Móveis de Baixo Custo.

Berveglieri, A. (2014). Localização automática de pontos de controle em imagens aéreas baseada em cenas terrestres verticais.

Bouguet, J.-Y. Camera calibration toolbox for Matlab (2008). Computational vision at the California institute of technology. 2008. <http://www.vision.caltech.edu/bouguetj/calib_doc/>.

Brown, M., & Lowe, D. G. (2002). Invariant features from interest point groups. BMVC, 4, 398–410.

Bruce, A., & Bruce, P. (2019). Estatística Prática para Cientistas de Dados. Alta Books.

Chum, O., & Matas, J. (2008). Optimal randomized RANSAC. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1472–1482.

Dong, Z., Yang, B., Liang, F., Huang, R., & Scherer, S. (2018). Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 61–79.

dos Santos, M. C., & Rocha, A. (2012). Revisao de Conceitos em Projeçao, Homografia, Calibraçao de Câmera, Geometria Epipolar, Mapas de Profundidade e Varredura de Planos. Unicamp, Campinas, Tech. Rep.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

Fu, Y., Lei, Y., Wang, T., Curran, W. J., Liu, T., & Yang, X. (2020). Deep learning in medical image registration: a review. Physics in Medicine & Biology, 65(20), 20TR01.

Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university press.

Kumar, R., Anandan, P., Irani, M., Bergen, J., & Hanna, K. (1995). Representation of scenes from collections of images. Proceedings IEEE Workshop on Representation of Visual Scenes (In Conjunction with ICCV’95), 10–17.

Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011). BRISK: Binary robust invariant scalable keypoints. 2011 International Conference on Computer Vision, 2548–2555.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

Mills, A., & Dudek, G. (2009). Image stitching with dynamic elements. Image and Vision Computing, 27(10), 1593–1602.

Paul, S., & Pati, U. C. (2021). A comprehensive review on remote sensing image registration. International Journal of Remote Sensing, 42(14), 5396-5432.

Pons, J.-P., Keriven, R., & Faugeras, O. (2007). Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. International Journal of Computer Vision, 72(2), 179–193.

Raguram, R., Frahm, J.-M., & Pollefeys, M. (2008). A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. European Conference on Computer Vision, 500–513.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. 2011 International Conference on Computer Vision, 2564–2571.

Schonberger, J. L., & Frahm, J.-M. (2016). Structure-from-motion revisited. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4104–4113.

Theiler, P. W., Wegner, J. D., & Schindler, K. (2015). Globally consistent registration of terrestrial laser scans via graph optimization. ISPRS Journal of Photogrammetry and Remote Sensing, 109, 126–138.

Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1), 138–156.

Wang, J., & Watada, J. (2015). Panoramic image mosaic based on SURF algorithm using OpenCV. 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP) Proceedings, 1–6.

Weinmann, M. (2016). Reconstruction and analysis of 3D scenes (Vol. 1). Springer.

Yang, Z.-L., & Guo, B.-L. (2008). Image mosaic based on SIFT. 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 1422–1425.

Zuliani, M. (2009). RANSAC for Dummies. Vision Research Lab, University of California, Santa Barbara.

Published

30/10/2022

How to Cite

BENEVIDES, R. A. L. .; PITOMBEIRA, K.; CENTENO, J.; SIMÕES, P. R. . Automatic, accurate and robust image registration with adapted RANSAC (Random Sample Consensus) for SIFT (Scale Invariant Feature Transform) descriptor. Research, Society and Development, [S. l.], v. 11, n. 14, p. e383111436631, 2022. DOI: 10.33448/rsd-v11i14.36631. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36631. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences