Polymeric pullulan films incorporated with extract of Cyclospermum leptophyllum (pers.) Sprague for healing purposes
DOI:
https://doi.org/10.33448/rsd-v11i15.37082Keywords:
Apium leptophyllum; Biofilms; Wild celery; Antioxidant; Dressing.Abstract
Healing films provide excellent results in the adjuvant treatment of injuries. Its association with plant extracts allows the achievement of therapeutic activities, favoring skin regeneration. This study aimed to develop pullulan films incorporated with an extract from the aerial parts of Cyclospermum leptophyllum to be used as healing dressings and to evaluate their morphological and physicochemical characteristics and their potential antioxidant activity. Polymeric films in the proportion of 4% PU (m/v) and 15% plant extract and control films composed only of the polymer matrix were produced using the casting method. The films were evaluated for thickness, visual aspects, solubility, water vapor permeability, swelling, degradation, and antioxidant activity. They showed good appearance and flexibility but heterogeneity due to the precipitation of components. A high degree of solubility and swelling was observed, and despite its rapid dissolution in contact with water, the formation of a hydrogel can enable greater adherence to wounds. The films have controlled water vapor transmission, that allows gas exchange. A DPPH radical inhibition rate of 17.23% was obtained, proving its antioxidant activity. Therefore, the biofilms produced have healing potential, which can be better studied in the future through tests demonstrating antimicrobial, and anti-inflammatory activities.
References
Almeida, R. R. (2015). Mecanismos de ação dos monoterpenos aromáticos: timol. [Undergraduate honors thesis, Universidade Federal de São João del-Rei]. https://www.ufsj.edu.br/portal2-repositorio/File/coqui/TCC/Monografia-TCC-Regiamara_R_Almeida-20151.pdf
Asamenew, G., Tadesse, S., Asres, K., Mazumder, A., & Bucar, F. (2008). A Study on the Composition, Antimicrobial and Antioxidant Activities of the Leaf Essential Oil of Apium leptophylum (Pers.) Benth. Growing in Ethiopia. Ethiopian Pharmaceutical Journal, 26(2). https://doi.org/10.4314/epj.v26i2.43040
Barros, C. F., Lima, I. A., & Bunhak, É. J. (2022). Filmes poliméricos no manejo de feridas: uma revisão. Research, Society and Development, 11(6), e10111628757. https://doi.org/10.33448/rsd-v11i6.28757
Bilohan, M. (2021). Desenvolvimento de trilaminados de pululana/celulose/zeína para embalagem alimentar [Master’s thesis, Universidade Beira Interior]. https://ubibliorum.ubi.pt/bitstream/10400.6/11268/1/8364_17993.pdf
Breda, M. C. (2010). Fitoesteróis e os benefícios na prevenção de doenças: uma revisão. [Undergraduate honors thesis, Universidade Federal do Rio Grande do Sul]. http://hdl.handle.net/10183/70084
Bueno, R. S. (2019). Desenvolvimento de filmes funcionais incorporando extrato de Acmella oleracea para fins cosméticos e antimicrobian. [Master’s thesis, Universidade Federal do Triângulo Mineiro]. http://bdtd.uftm.edu.br/bitstream/tede/815/5/Dissert%20Rubia%20S%20Bueno.pdf
Calceto, G. C. P., & Romero, L. N. C. (2017). Diseño y desarrollo de un prototipo de sistema mucoadhesivo de caléndula officinalis usando como matriz polimérica pullulan para uso en la mucosa oral. [Undergraduate honors thesis, Universidad de Ciencias Aplicadas y Ambientales]. https://repository.udca.edu.co/handle/11158/860
Chu, Y., Xu, T., Gao, C., Liu, X., Zhang, N., Feng, X., Liu, X., Shen, X., & Tang, X. (2019). Evaluations of physicochemical and biological properties of pullulan-based films incorporated with cinnamon essential oil and Tween 80. International Journal of Biological Macromolecules, 122, 388–394. https://doi.org/10.1016/j.ijbiomac.2018.10.194
Ganesh, M. S., & J.Radhika, D. (2020). In Silico Approaches to Study the Anti Cancer Potential of Bioactive Compounds of Apium leptophyllum Pers by Molecular Docking: Life Sciences-Biochemistry for Better Diagnosis and Therapy. International Journal of Life Science and Pharma Research, 90–98. https://doi.org/10.22376/ijpbs/lpr.2020.10.4.L90-98
Gomes, D. do N. (2016). Desenvolvimento e caracterização de filmes de Alginato incorporados com extratos de Anadenanthera colubrina (Vell.) Brenan visando o desenvolvimento de substituto temporário de pele. [Master’s thesis, Universidade Federal de Pernambuco]. https://repositorio.ufpe.br/handle/123456789/20335
Hajji, S., Ktari, N., Ben Salah, R., Boufi, S., Debeaufort, F., & Nasri, M. (2021). Development of Nanocomposite Films Based on Chitosan and Gelatin Loaded with Chitosan-Tripolyphosphate Nanoparticles: Antioxidant Potentials and Applications in Wound Healing. Journal of Polymers and the Environment, 30, 833-854. https://doi.org/10.1007/s10924-021-02239-7
Helal, I., Galala, A., Saad, H.-E., & Halim, A. (2016). Bioactive Constituents from Apium leptophyllum Fruits. British Journal of Pharmaceutical Research, 14(3), 1–8. https://doi.org/10.9734/bjpr/2016/30289
Lane, M. E. (2013). Skin penetration enhancers. International Journal of Pharmaceutics, 447(1-2), 12–21. https://doi.org/10.1016/j.ijpharm.2013.02.040
Li, S., Fan, M., Deng, S., & Tao, N. (2022). Characterization and Application in Packaging Grease of Gelatin–Sodium Alginate Edible Films Cross-Linked by Pullulan. Polymers, 14(15), 3199. https://doi.org/10.3390/polym14153199
Lima, I. A. de, Pomin, S. P., & Cavalcanti, O. A. (2017). Development and characterization of pullulan-polymethacrylate free films as potential material for enteric drug release. Brazilian Journal of Pharmaceutical Sciences, 53(3). https://doi.org/10.1590/s2175-97902017000300002
Luís, Â., Ramos, A., & Domingues, F. (2020). Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications. Antibiotics, 9(10), 681. https://doi.org/10.3390/antibiotics9100681
Luís, Â., Ramos, A., & Domingues, F. (2021). Pullulan–Apple Fiber Biocomposite Films: Optical, Mechanical, Barrier, Antioxidant and Antibacterial Properties. Polymers, 13(6), 870. https://doi.org/10.3390/polym13060870
Moreski, D. B., Bueno, F. G., & Leite-Mello, E. V. de S. (2018). AÇÃO CICATRIZANTE DE PLANTAS MEDICINAIS: UM ESTUDO DE REVISÃO. Arquivos de Ciências da Saúde Da UNIPAR, 22(1). https://doi.org/10.25110/arqsaude.v22i1.2018.6300
Oliveira, G. L. S. (2015). Determination in vitro of the antioxidant capacity of natural products by the DPPH•method: review study. Revista Brasileira de Plantas Medicinais, 17(1), 36–44. https://doi.org/10.1590/1983-084X/12_165
Oliveira, J. D. (2014). Desenvolvimento biotecnológico de pululana e caracterização físico-química. [Doctoral dissertation, Universidade Federal do Rio de Janeiro]. https://epqb.eq.ufrj.br/download/desenvolvimento-biotecnologico-de-pululana-e-caracterizacao-fisico-quimica.pdf
Pace, D. (2002). Efeito de substâncias antioxidantes (Vitamina C, Vitamina E e Gingko biloba) na viabilidade de retalho cutâneo dorsal em ratos. [Master’s thesis, Universidade Federal do Paraná]. http://hdl.handle.net/1884/29901
Pande, C., Tewari, G., Singh, C., & Singh, S. (2011). Essential oil composition of aerial parts of Cyclospermum leptophyllum(Pers.) Sprague ex Britton and P. Wilson. Natural Product Research, 25(6), 592–595. https://doi.org/10.1080/14786419.2010.487190
Pessoa, A. F. M. (2014). A administração sistêmica e tópica de vitaminas antioxidantes acelera a cicatrização de feridas cutâneas em camundongos diabéticos. [Doctoral dissertation, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/42/42134/tde-20022015-085525/
Pradella, J. G. da C. (2006). Biopolímeros e Intermediários Químicos. Centro de Gestão e Estudos Estratégicos. http://www.redetec.org.br/wp-content/uploads/2015/02/tr06_biopolimeros.pdf
Sahoo, B. H., Bhattamisra, S. K., Biswas, U. K., & Sagar, R. (2013). Estimation of total phenolics and flavonoidal contents as well as in vitro antioxidant potential of Apium leptophyllum Pers. Herba Polonica, 59(3), 37–50. https://doi.org/10.2478/hepo-2013-0015
Santos, S., & Costa, R. (2015). Prevenção de lesões de pele em recém-nascidos: o conhecimento da equipe de enfermagem. Texto & Contexto Enfermagem, 24(3), 731–739. https://doi.org/10.1590/0104-0707201501123_014
Silva, M. de L. C. da, Martinez, P. F., Izeli, N. L., Silva, I. R., Vasconcelos, A. F. D., Cardoso, M. de S., Stelutti, R. M., Giese, E. C., & Barbosa, A. de M. (2006). Caracterização química de glucanas fúngicas e suas aplicações biotecnológicas. Química Nova, 29(1), 85–92. https://doi.org/10.1590/s0100-40422006000100017
Silva, P. L. da, Gomes, A. M. M., Ricardo, N. M. P. S., & Machado, T. F. (2016). Preparation and characterization of phosphorylated starch blends with chitosan and polyvinyl alcohol. Química Nova, 39(4), 450–455. https://doi.org/10.5935/0100-4042.20160043
Simões, C. M. O., Schenkel, E. P., Gosmann, G., Mello, J. C. P. de, Mentz, L. A., & Petrovick, P. R. (1999). Farmacognosia da Planta ao Medicamento. Editora da UFSC.
Singh, C., Singh, S., Pande, C., Tewari, G., Pande, V., & Sharma, P. (2013). Exploration of antimicrobial potential of essential oils of Cinnamomum glanduliferum, Feronia elephantum, Bupleurum hamiltonii and Cyclospermum leptophyllum against foodborne pathogens. Pharmaceutical Biology, 51(12), 1607–1610. https://doi.org/10.3109/13880209.2013.805234
Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J., & Mirastschijski, U. (2016). Skin Wound Healing: An Update on the Current Knowledge and Concepts. European Surgical Research, 58(1-2), 81–94. https://doi.org/10.1159/000454919
Souto, E. B., Yoshida, C. M. P., Leonardi, G. R., Cano, A., Sanchez-Lopez, E., Zielinska, A., Viseras, C., et al. (2021). Lipid-Polymeric Films: Composition, Production and Applications in Wound Healing and Skin Repair. Pharmaceutics, 13(8), 1199. MDPI AG. http://dx.doi.org/10.3390/pharmaceutics13081199
Standard Test Methods for Water Vapor Transmission of Materials (ASTM E96 / E96M-16). (2016). ASTM International. 10.1520/E0096_E0096M-16.
Sueiro, A. C., Faria-Tischer, P. C. S., Lonni, A. A. S. G., & Mali, S. (2016). Biodegradable films of cassava starch, pullulan and bacterial cellulose. Química Nova, 39(9), 1059–1064. https://doi.org/10.5935/0100-4042.20160118
Takata, G. M. (2019). Desenvolvimento e avaliação de nova preparação de anfotericina B e/ou cetoconazol em dispersão de bixina, pullulan e trealose. [Master’s thesis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo] doi:10.11606/D.9.2020.tde-19022020-162902.
Zhai, Y., Wang, J., Wang, H., Song, T., Hu, W., & Li, S. (2018). Preparation and Characterization of Antioxidative and UV-Protective Larch Bark Tannin/PVA Composite Membranes. Molecules, 23(8), 2073. https://doi.org/10.3390/molecules23082073
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Talita Tonin Andrighetti; Mariah Cristofoli Jacques; Carolina Schmitt; Andréa Steinhorst Antunes ; Carolina Fernanda de Barros; Claudia Mara Dessanti de Freitas ; Élcio José Bunhak ; Isabela Angeli de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.