Microalgae as agents for upcycling industrial wastewater: energy patents and scientific literature overview
DOI:
https://doi.org/10.33448/rsd-v11i15.37097Keywords:
Wastewater treatment by microalgae; Industrial wastewater; Microalgal systems.Abstract
The oil/gas, ethanol, biodiesel and biogas industries generate wastewater known as produced water, vinasse, crude glycerin and methanogenic digester´s based effluents, respectively. Microalgal systems have been suggested as a suitable and adaptable biological approach for the treatment of such wastewaters. The advantage of such an approach is the combination of treatment with the accumulation of algal valuable bioproducts. This systematic literature review aims to analyze scientific and patent production with bibliometric analysis. Another aim is to discuss the algal bioremediation strategies that were adopted by the cited industries for treating their distinct effluents. Data was obtained using scientific papers and patents published between 2000 to 2020 (335 scientific papers and 104 patents). The United States contributed with the largest number of articles, followed by China and Brazil. Meanwhile China, South Korea and the United States are the major owners of patents. This work identified that microalgal based system is successful in bioremediating several pollutants and that glycerol significantly improves algal performance for bioproducts production. Nonetheless, the efficiency of this process is hindered either by the adopted strategy applied before the cultivation stage or after this process. For instance, variables such as nutrient supplementation, turbidity and salinity corrections were identified as pivotal for process performance. Thus, the full-scale process is directly associated to the correct integration of wastewater production and proper management of microalgae systems.
References
Ammar, S.H., Khadim, H.J., & Mohamed, A.I. (2018). Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environ Technol & Innov., 10, 132–142. 10.1016/j.eti.2018.02.002
Arthur, J.D. et al (2011). Management of produced water from oil and gas wells. Working Document of the NPC North American Resource Development Study Paper, 2-17. Retrieved from https://www.npc.org/Prudent_Development-Topic_Papers/2-17_Management_of_Produced_Water_Paper.pdf.
Awasthi, M.K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R.P., Yan, B., Awasthi, S.K., Jain, A., Liu, T., Duan, Y., Pandey, A., Zhang, Z., & Taherzadeh, M.J. (2020). Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev., 127, 109876. 10.1016/j.rser.2020.109876
Beigbeder, J-B., Boboescu, J-Z., & Lavoie, J-M. (2019). Thin stillage treatment and co-production of bio-commodities through finely tuned Chlorella vulgaris cultivation. J Clean Prod., 216, 257-267. 10.1016/j.jclepro.2019.01.111
Benemann, J.R. (2008). Opportunities and Challenges in Algae Biofuels Production. Algae World 2008. Retrieved May 28, 2022 from http://www.fao.org/uploads/media/algae_positionpaper.pdf.
Brauman, K.A., Daily, G.C., Duarte, T.K., & Mooney, H.A. (2007). The nature and value of ecosystem services: An overview highlighting hydrologic services. Annual Rev of Environ and Resour., 32, 67–98. 10.1146/annurev.energy.32.031306.102758
Bussa, M., Zollfrank, C., & Roder, H. (2021). Life cycle assessment with parameterised inventory to derive target values for process parameters of microalgae biorefineries. Algal Res., 57, 102352. 10.1016/j.algal.2021.102352
Cabello, P.E., Scognamiglio, F.P., & Terán, F.J.C. (2009). Vinasses Treatment In Anaerobic Fludized Bed Reactor. Journal of Environmental Engineering Course, 6, 321-338. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjgqrun3JX7AhVkppUCHY6lDJMQFnoECBIQAQ&url=http%3A%2F%2Fferramentas.unipinhal.edu.br%2Fengenhariaambiental%2Finclude%2Fgetdoc.php%3Fid%3D517%26article%3D209%26mode%3Dpdf&usg=AOvVaw3MR4sKD6-rwBzEBb6ZmRqe
Chen, C-Y., Lee, M-H., Leong, Y.K., Chang, J-S., & Lee, D-J. (2020). Biodiesel production from heterotrophic oleaginous microalga Thraustochytrium sp. BM2 with enhanced lipid accumulation using crude glycerol as alternative carbon source. Bioresour Technol., 306, 123113. 10.1016/j.biortech.2020.123113
Choi, Y.Y., Patel, A.K., Hong, M.E., Chang, W.S., & Sim, S.J. (2019). Microalgae bioenergy carbon capture utilization and storage (BECCS) technology: An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Rep, 7, 100270. 10.1016/j.biteb.2019.100270
Chuka-Ogwude, D., Ogbonna, J., & Moheimani, N.R. (2020). A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Res., 47, 101841. 10.1016/j.algal.2020.101841
Concas, A., Lutzu, G.A., Pisu, M., & Cao, G. (2012). Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100% (v/v) CO2. Chem. Eng. J., 213, 203–213. 10.1016/j.cej.2012.09.119
Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol. 24, 329-337. doi.org/10.1007/s10811-012-9810-8
Craggs, R.J., Lundquist, T.J., & Benemann, J.R. (2013). Algae for Biofuels and Energy. In: Borowitzka M., Moheimani N. (eds) Developments in Applied Phycology, vol 5. Springer, Dordrecht. 10.1007/978-94-007-5479-9_9
Deconinck, N., Muylaert, K., Ivens, W., & Vandamme, D. (2018). Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Research, 31, 469–477. org/10.1016/j.algal.2018.01.016
Durán Sánchez, A., Álvarez-García, J., Río-Rama, D., & Cruz, M. (2014). Active tourism research: A literature review. Tourism Recreation and Research, 8, 62–76. org/10.1080/02508281.2006.11081265
España-Gamboa, E., Mijangos-Cortes, J., Barahona-Érez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., & Alzate-Gaviria, L. (2011), Vinasses: characterization and treatments. Waste Manag Res., 29, 1235-1250. 10.1177/0734242X10387313
Fakhru’l-Razi, A. et al (2009) Review of technologies for oil and gas produced water treatment. J of Hazard Mater., 170, 530-551. 10.1016/j.jhazmat.2009.05.044
Fasaei, F., Bitter, J.H., Slegers, P.M., & Van Boxtel, A.J.B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res., 31, 347–362. 10.1016/j.algal.2017.11.038
Fuentes-Grünewald, C., Gayo-Peláez, J.I., Ndovela, V., Wood, E., Kapoore, R.V., & Llewellyn, C.A. (2021). Towards a circular economy: A novel microalgal two-step growth approach to treat excess nutrients from digestate and to produce biomass for animal feed. Bioresour Technol., 320, 124349. 10.1016/j.biortech.2020.124349
Gholami, Z., Zuhairi, A., & Lee, K. (2014). Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renew Sustain Energy Rev., 39, 327-41. 10.1016/j.rser.2014.07.092
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F. et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812-818. org/10.1126/science.1185383
Golueke, C.G. & Oswald, W.J. (1959). Biological conversion of light energy to the chemical energy of methane. Appl Microbiol., 7(4), 219-227. Retrieved from https://journals.asm.org/doi/10.1128/am.7.4.219-227.1959
Graham, E.J.S., Dean, C.A., Yoshida, T.M., Twary, S.N., Teshima, M., et al, (2017). Oil and gas produced water as a growth medium for microalgae cultivation: A review and feasibility analysis. Algal Res., 24, 492–504. .org/10.1016/j.algal.2017.01.009
Grama, B.S., Agathos, S.N., & Jeffryes, C.S. (2016). Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol. ACS Sustainable Chem. Eng., 4 (3), 1611–1618. org/10.1021/acssuschemeng.5b01544
Grizzetti, A.B., Lanzanova, D., Liquete, C., & Reynaud, A. (2015). Cook-book for water ecosystem service assessment and valuation. JRC Science and policy Report. European Commission Luxembourg. Italy. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjxss6M3ZX7AhXOGbkGHfEEAGoQFnoECBEQAQ&url=https%3A%2F%2Fpublications.jrc.ec.europa.eu%2Frepository%2Fbitstream%2FJRC94681%2Flbna27141enn.pdf&usg=AOvVaw3R-qGu9Cnvm28j6roVBVUi.
Ground Water Protection Council (2020). U.S. Produced Water Volumes and Management Practices in 2017. Retrieved Apr 30, 2022, from https://www.gwpc.org/sites/gwpc/uploads/documents/publications/pwreport2017final.pdf
Hammed, A.M., Prajapati, S.K., Simsek, S., & Simsek, H. (2016), Growth regime and environmental remediation of microalgae. Algae, 31 (3), 189–204. org/10.4490/algae.2016.31.8.28
Haraldsen, T.K., Andersen, U., Krogstad, T., & Sørheim, R. (2011). Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manage Res., 29, 1271-1276. org/10.1177/0734242X11411975
Hong, J.W., Kang, N.S., Jang, H.S., Kim, H.J., An, Y.R., Yoon, M., & Kim, H.S. (2019). Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives. Ocean and Polar Res., 41, 289-309. org/10.4217/OPR.2019.41.4.289
IEA - International Energy Agency. (2019). IEA Bioenergy Task 37 – Country Reports Summaries 2019. Retrieved Mar 03, 2022, from http://task37.ieabioenergy.com/
INRAE. (2020). Springer. Retrieved Mar 18, 2022, from https://www.springer.com/journal/13595/updates/17234280
Judd, S., Van Den Broeke, L., Shurair, M., Kuti, Y., & Znad, H. (2015). Algal remediation of CO2 and nutrient discharges: A review. Water Res., 87, 356-366. org/10.1016/j.watres.2015.08.021
Källqvist, T. & Svenson, A. (2003) Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta. Water Res., 37, 477-484. org/10.1016/S0043-1354(02)00361-5
Kaur, J., Sarma, A.K., Jha, M.K., & Gera, P. (2020). Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol Reports, 27, e00487. org/10.1016/j.btre.2020.e00487
Kiran, B., Pathak, K., Kumar, R., & Deshmukh, D. (2014). Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecol. Eng., 73, 326-330. org/10.1016/j.ecoleng.2014.09.094
Kong, P.S., Kheireddine, M., Mohd, W., & Wan, A. (2016). Conversion of crude and pure glycerol into derivatives : A feasibility evaluation. Renew Sustain Energy Rev., 63, 533-555. org/10.1016/j.rser.2016.05.054
Lakshmidevi, R., Gandhia, N.N., & Muthukumar, K. (2020). Enhanced biomass and lutein production by mixotrophic cultivation of Scenedesmus sp. using crude glycerol in an airlift photobioreactor. Biochem Eng J., 161,107684. org/10.1016/j.bej.2020.107684
Lam, M.K., Lee, K.T., & Mohamed, A.R. (2012). Current status and challenges on microalgae-based carbon capture. Int. J. Greenh Gas Cont., 10, 456-469. org/10.1016/j.ijggc.2012.07.010
Liu, Y., Chen, B., Wei, W., Shao, L., Li, Z., Jiang, W., & Chen, G. (2020). Global water use associated with energy supply, demand and international trade of China. Appl Energy., 257, 113992. org/10.1016/j.apenergy.2019.113992
Lutzu, G.A., Marin, M.A., Concas, A., & Dunford, N.T. (2020). Growing Picochlorum oklahomensis in Hydraulic Fracturing Wastewater Supplemented with Animal Wastewater. Water Air Soil Pollut., 231:457. org/10.1007/s11270-020-04826-1
Lv, J., Guo, J., Feng, J., Liu, Q., & Xie, S. (2017). Effect of sulfate ions on growth and pollutants removal of self-flocculating microalga Chlorococcum sp. GD in synthetic municipal wastewater. Bioresour Technol., 234, 289–296. org/10.1016/j.biortech.2017.03.061
Ma, X., Zheng, H., Addy, M., Anderson, E., Liu, Y., Chen, P., & Ruan, R. (2016). Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production. Bioresour Technol., 207, 252-261. org/10.1016/j.biortech.2016.02.013
Markou, G. & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol. Adv., 31, 1532-1542. org/10.1016/j.biotechadv.2013.07.011
Mobin, S. & Alam, F. (2017). Some promising microalgal species for commercial applications: A review. Energy Procedia, 110, 510-517. org/10.1016/j.egypro.2017.03.177
Monteiro, M.R., Kugelmeier, C.L., Pinheiro, R.S., Otávio, M., & César, S. (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renew Sustain Energy Rev., 88, 109-122. org/10.1016/j.rser.2018.02.019
Moraes, B.S., Zaiat, M., & Bonomi, A. (2015). Anaerobic digestion of vinasse from sugar cane ethanol production in Brazil: Challenges and perspectives. Renew Sustain Energy Rev., 44, 888-903. org/10.1016/j.rser.2015.01.023
Morée, A., Beusen, A., Bouwman, A., & Willems, W. (2013). Exploring global nitrogenand phosphorus flows in urban wastes during the twentieth century. Global Biogeo Chem. Cycles, 27, 836–846.
Moreno-Garcia, L., Adjallé, K., Barnabé, S., & Raghavan, G.S.V. (2017). Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sustain Energy Rev., 76, 493–506. org/10.1016/j.rser.2017.03.024
Neff, J.M. (2002). Bioaccumulation in marine organisms: effect of contaminants from oil well produced water. Elsevier. org/10.1016/B978-0-08-043716-3.X5000-3
Nizami, A.S., Rehan, M., Waqas, M., Navqi, M., Ouda, O.K.M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresour Technol., 241, 1101–1117. org/10.1016/j.biortech.2017.05.097
Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev., 34, 473–492. org/10.1007/s13593-013-0196-z
Oil and Gas Act, NMSA 1978, section 70-2-12, New Mexico Administrative Code, Title 19, Chapter 25, Part 34, 2008. Retrieved from https://www.srca.nm.gov/parts/title19/19.015.0002.html
Park, J.B.K., Craggs, R.J., & Shilton, A.N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol., 102, 35-42. org/10.1016/j.biortech.2010.06.158
Parsy, A., Sambusiti, C., Baldoni-Andrey, P., Elan, T., & Périé, F. (2020). Cultivation of Nannochloropsis oculata in saline oil & gas wastewater supplemented with anaerobic digestion effluent as nutrient source. Algal Res., 50, 101966. org/10.1016/j.algal.2020.101966
Patel, A.K., Choi, Y.Y., & Sim, S.J. (2020a). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour Technol., 300, 122741. org/10.1016/j.biortech.2020.122741
Patel, A.K., Joun, J., & Sim, S.J. (2020b). A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresour Technol., 313, 123681. org/10.1016/j.biortech.2020.123681
Patent CN104556544, Method for producing biodiesel by treating oilfield sewage and fixing CO2 by virtue of microalgae, 2013.
Patent CN104561153, Method for producing bio-oil by cultivating algae recycling vinasse nutrients, 2015.
Patent CN107177506, Method for culturing chlorella by using crude glycerine optimized sludge dewatering liquid, 2017.
Patent CN108192828, Method for preparing microalgae culture medium by waste recovery technology, 2018.
Patent CN108611276, Method for resourceful treatment of vinasse wastewater with microalgae, 2018.
Patent CN108624506, Method for purifying biogas slurry and producing microbial biomass by mixed culture of microalgae and yeast, 2018.
Patent CN209292158, Oilfield sewage microbiological treatment combined device, 2018.
Patent EP2093197, Method for removing pollutants from produced water, 2008.
Patent KR101549666, Method for manufacturing culture medium for culturing microalgae using anaerobic digestate of pig manure, method for culturing microalgae, and method for treating pig manure including same, 2015.
Patent US7989195, Heterotrophic algal high cell density production method and system, 2008.
Patent US9902977, Process of producing bioenergy with low carbon dioxide emissions and zero-waste of biomass, 2013.
Patent WO2017/184729, Process and method for stillage fermentation, 2017.
Pereira, H.M.S. & Vasconcellos, E.P.G. (2014) Differences in the patent management in Brazilian companies with and without plants abroad. R.Adm., 49, 625-641. org/10.5700/rausp1173
Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Res., 45, 11–36. org/10.1016/j.watres.2010.08.037
Perin, G., & Jones, P.R. (2019). Economic feasibility and long-term sustainability criteria on the path to enable a transition from fossil fuels to biofuels. Current Opinion in Biotech, 57, 175–182. org/10.1016/j.copbio.2019.04.004
Posadas, E., Bochon, S., Coca, M., García-González, M.C., García-Encina, P.A., & Muñoz, R. (2014). Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol, 26, 2335–2345. org/10.1007/s10811-014-0263-0
Pradima, J., & Kulkarni, M.R. (2017). Review on enzymatic synthesis of value added products of glycerol, a byproduct derived from biodiesel production. Res-Efficien Technol., 4, 394-405. org/10.1016/j.reffit.2017.02.009
Preisner, M., Neverova-Dziopak, E., & Kowalewski, Z. (2021). Mitigation of eutrophication caused by wastewater discharge: A simulation-based approach. Ambio, 50, 413–424. org/10.1007/s13280-020-01346-4
Ramlow, H., Machado, R.A.F., & Marangoni, C. (2017). Direct contact membrane distillation for textile wastewater treatment: a state of the art review. Water Sc Technol., 76, 2565-2579. org/10.2166/wst.2017.449
Ren, H., Tuo, J., Addy, M.M., Zhang, R., Lu, Q., Anderson, E., Chen, P., & Ruan, R. (2017). Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresour Technol., 245, 1130-1138. org/10.1016/j.biortech.2017.09.040
REN21 (Renewable Energy Policy Network for the 21st Century). (2020). Renewables 2020 Global Status Report. (Paris: REN21 Secretariat). Retrieved Apr 8, 2022, from https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf
Renewable Fuels Association (RFA), 2019. World Fuel Ethanol Production. Retrieved Apr 8, 2022, from https://ethanolrfa.org/resources/industry/statistics/.
Rodrigues, T. & Junior, A.B. (2019). Technological prospecting in the production of charcoal: A patent study. Renewable and Sustainable Energy Reviews, 111, 170–183. org/10.1016/j.rser.2019.04.080
Rojas-Sánchez, M.A., Palos-Sánchez, P.R., & Folgado-Fernandéz, J.A. (2022). Systematic literature review and bibliometric analysis on virtual reality and education. Educ Inf Technol. org/10.1007/s10639-022-11167-5
Roser, M., Ritchie, H., & Ortiz-Ospina, E. (2019). World Population Growth. Our World In Data.org. Retrieved Apr 10, 2022, from https://ourworldindata.org/world-population-growth.
Santana, H., Cereijo, C.R., Teles, V.C., Nascimento, R.C., Fernandes, M.S., Brunale, P., Campanha, R.C., Soares, I.P., Silva, F.C.P., Seixas, S.P., Siqueira, F.G., & Brasil, B.S.A. (2017). Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioresour Technol., 228, 2133-140. org/10.1016/j.biortech.2016.12.075
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abdullah, E.F. (2019), Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci., 26, 709-722. org/10.1016/j.sjbs.2017.11.003
Sayedin, F., Kermanshahi-Pour, A., He, Q.S., Tibbetts, S.M., Lalonde, C.G.E., & Brar, S.K. (2020), Microalgae cultivation in thin stillage anaerobic digestate for nutrient recovery and bioproduct production. Algal Res., 47, 101867. org/10.1016/j.algal.2020.101867
Schindler, D.W. (2006) Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51, 356-363. org/10.4319/lo.2006.51.1_part_2.0356.
Sim, S.J., Joun, J., Hong, M.E., & Patel, A.K. (2019). Split mixotrophy: A novel cultivation strategy to enhance the mixotrophic biomass and lipid yields of Chlorella protothecoides. Bioresour. Technol., 291, 121820. org/10.1016/j.biortech.2019.121820
Somers, M.D., Chen, P., Clippinger, J., Cruce, J.R., Davis, R., Lammers, P.J., & Quinn, J.C. (2021) Techno-economic and life-cycle assessment of fuel production from mixotrophic Galdieria sulphuraria microalgae on hydrolysate. Algal Res., 59, 102419. org/10.1016/j.algal.2021.102419
Stenchly, K., Dao, J., Lompo, D.J., & Buerkert, A. (2017). Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system. Environ Pollut., 222, 58-63. org/10.1016/j.envpol.2017.01.006
Subramanian, G., Yadav, G., & Sen, R. (2016). Rationally leveraging mixotrophic growth of microalgae in different photobioreactor configurations for reducing the carbon footprint of an algal biorefinery: a techno-economic perspective. RSC Adv., 6, 72897. org/10.1039/C6RA14611B
Sutherland, D.L. & Ralph, P.J. (2019). Microalgal bioremediation of emerging contaminants – Opportunities and challenges. Water Res., 164, 114921. org/10.1016/j.watres.2019.114921
Sutherland, D.L., Heubeck, S., Park, J., Turnbull, M.H., & Craggs, R.J. (2018). Seasonal performance of a full-scale wastewater treatment enhanced pond system. Water Res., 136:150-159. https://doi.org/10.1016/j.watres.2018.02.046
Sydney, E.B., Neto, C.J.D., Carvalho, J.C., Vandenberghe, L.P.S., Sydney, A.C.N., Letti, L.A.J., Karp, S.G., Soccol, T., Woiciechowski, A.L., Medeiros, A.B.P., & Soccol, C.R. (2019). Microalgal biorefineries: Integrated use of liquid and gaseous effluents from bioethanol industry for efficient biomass production. Bioresour Technol., 292, 121955. org/10.1016/j.biortech.2019.121955
Tan, X-B., Yang, L-B., Zhang, W-W., & Zhao, X-C. (2020), Lipids production and nutrients recycling by microalgae mixotrophic culture in anaerobic digestate of sludge using wasted organics as carbon source. Bioresour Technol., 297, 122379. org/10.1016/j.biortech.2019.122379
Tao, R., Kinnunen, V., Praveenkumar, R., Lakaniemi, A-M., & Rintala, J.A. (2017). Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. J Appl Phycol., 29, 2845–2856. org/10.1007/s10811-017-1175-6
Tiwary, A., Williams, I.D., Pant, D.C., & Kishore, V.V. (2015). Assessment and mitigation of the environmental burdens to air from land applied food-based digestate. Environ Pollut., 203, 262-270. org/10.1016/j.envpol.2015.02.001
Wang, Y., Ho, S-H., Cheng, C-L., Guo, W-Q., Nagarajan, D., Ren, N-Q., Lee, D-J., & Chang, J-S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol., 222, 485-497. org/10.1016/j.biortech.2016.09.106
WIPO (2021) Patent Cooperation Treaty Yearly Review 2021: The International Patent System. Geneva: WIPO. 10.34667/tind.43799
World Water Assessment Programme (2014). Water and Energy: The United Nations World Water Development Report 2014. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000225741_eng.
Xia, A. & Murphy, J.D. (2016), Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends in Biotechnol., 34, 264-275. org/10.1016/j.tibtech.2015.12.010
Yadav, G., Shanmugam, S., Sivaramakrishnan, R., Kumar, D., Mathimani, T., Brindhadevi, K., Pugazhendhi, A., & Rajendran, K. (2021). Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel., 285, 119093. .org/10.1016/j.fuel.2020.119093
Yang, F.X., Hanna, M.A., & Sun, R.C. (2012). Value-added uses for crude glycerol - a byproduct of biodiesel production. Biotechnol. Biofuels, 5, 13-22. org/10.1186/1754-6834-5-13
Zhan, J., Rong, J., & Wang, Q. (2017). Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International J of Hydrogen Energy., 42, 8505-8517. org/10.1016/j.ijhydene.2016.12.021
Zhang, Z., Sun, D., Wu, T., Li, Y., Lee, Y., Liu, J., & Chen, F. (2017). The synergistic energy and carbon metabolism under mixotrophic cultivation reveals the coordination between photosynthesis and aerobic respiration in Chlorella zofingiensis. Algal Res., 25, 109–116. org/10.1016/j.algal.2017.05.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gabriele Rodrigues Conceição; Jânio Rodrigo de Jesus Santos; Carine Souza da Silva; Fabio Alexandre Chinalia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.