Ultrasonic measurements of temperature in materials

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.37755

Keywords:

Temperature distribution; Ultrasound; Thermometry; Velocity; Monitoring.

Abstract

Manufacturing processes and product development for industrial and medical applications are submitted to rigorous quality control. Quality assurance may provide accuracy of the physical quantities concerned to guarantee that defects do not arise when the product is developed. Quantities, such as temperature distribution play a significant role and must be monitored to prevent material damage. However, the number of techniques to sense temperature distribution inside a bulk material in a non-invasive and non-ionizing way is rare. Ultrasonic temperature estimation can overcome this issue, providing an alternative technique that matches such requirements to measure heating within materials. Here, we investigate ultrasonic velocity as a function of temperature in metals, polymers gel to mimic soft tissues (phantom), and biological tissues. Through a customized computational algorithm, we successfully estimated the heat source temperature at the surface, and throughout the length of the material. 

Author Biography

Sílvio Leão Vieira, Federal University of Goiás

Institute of Physics

References

Afaneh, A., Alzebda, S., Ivchenko, V., & Kalashnikov, A. N. (2011a). Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How. Physics Research International, 2011, e156396. https://doi.org/10.1155/2011/156396

Afaneh, A., Alzebda, S., Ivchenko, V., & Kalashnikov, A. N. (2011b). Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How. Physics Research International, 2011. https://doi.org/10.1155/2011/156396

Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G., & Crum, L. A. (2003). Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys., 49(4), 369–388. https://doi.org/10.1134/1.1591291

Barron, W. R. (1992). Principles of Infrared Thermometry. Sensors Magazine.

Bharat, S., Techavipoo, U., Kiss, M. Z., Liu, W., & Varghese, T. (2005). Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation. Ultrasound in Medicine & Biology, 31(3), 415–422. https://doi.org/10.1016/J.ULTRASMEDBIO.2004.12.020

Casper, A. J., Liu, D., Ballard, J. R., & Ebbini, E. S. (2013). Real-time implementation of a dual-mode ultrasound array system: In vivo results. IEEE Transactions on Biomedical Engineering, 60(10), 2751–2759. https://doi.org/10.1109/TBME.2013.2264484

Clegg, S. T., Das, S. K., Zhang, Y., Macfall, J., Fullar, E., & Samulski, T. V. (1995). Verification of a hyperthermia model method using MR thermometry. International Journal of Hyperthermia. https://doi.org/10.3109/02656739509022476

de Andrade, P. C. (2017). Desenvolvimento de um sistema de termometria por ultrassom para monitoramento de temperatura em materiais [Dissertação]. Universidade Federal de Goiás.

de Andrade, P. C., & Vieira, S. L. (2017). Monitoramento de temperatura interna em materiais por termometria ultrassônica. Revista Brasileira de Física Médica, 11(2), 34–37. https://doi.org/10.29384/rbfm.2017.v11.n2.p34-37

de Andrade, P. C., & Vieira, S. L. (2018). Development of an ultrasonic thermometry system. IEEE Latin America Transactions, 16(6). https://doi.org/10.1109/TLA.2018.8444385

de Oliveira, P. L., de Senneville, B. D., Dragonu, I., & Moonen, C. T. W. (2010). Rapid motion correction in MR-guided high-intensity focused ultrasound heating using real-time ultrasound echo information. NMR Biomed., 23(9), 1103–1108. https://doi.org/10.1002/nbm.1526

de Tommasi, F., Massaroni, C., Grasso, R. F., Carassiti, M., & Schena, E. (2021). Temperature Monitoring in Hyperthermia Treatments of Bone Tumors: State-of-the-Art and Future Challenges. Sensors 2021, Vol. 21, Page 5470, 21(16), 5470. https://doi.org/10.3390/S21165470

Fernández, J. L., Porta-Gándara, M. A., & Chargoy, N. (2005). Rapid on-site evaluation of thermal comfort through heat capacity in buildings. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2004.09.003

Gilbert, J. C., Onik, G. M., Hoddick, W. K., & Rubinsky, B. (1985). Real time ultrasonic monitoring of hepatic cryosurgery. Cryobiology. https://doi.org/10.1016/0011-2240(85)90179-8

Gupta, R. K. (2019). Partial Differential Equations: Finite Difference Methods. In Numerical Methods: Fundamentals and Applications. https://doi.org/10.1017/9781108685306.017

Ihara, I., & Takahashi, M. (2009). Ultrasound thermometry for monitoring internal temperature gradient in heated material. Proceedings - IEEE Ultrasonics Symposium. https://doi.org/10.1109/ULTSYM.2009.5441882

Ihara, I., Tomomatsu, T., Takahashi, M., Kosugi, A., Matsuya, I., & Yamada, H. (2013). Ultrasonic Thermometry for Temperature Profiling of Heated Materials. https://doi.org/10.1007/978-3-642-32180-1_13

Kalpakjian, S. and S. R. S. (1992). Manufacturing Processes for Engineering Materials (2nd Ed). Addison-Wesley Publishing Company.

Konofagou, E. E., Thierman, J., Karjalainen, T., & Hynynen, K. (2002). The temperature dependence of ultrasound-stimulated acoustic emission. Ultrasound in Medicine & Biology, 28(3), 331–338. https://doi.org/10.1016/S0301-5629(01)00525-7

Kosugi, A., Ihara, I., & Matsuya, I. (2012). Accuracy evaluation of surface temperature profiling by a laser ultrasonic method. Japanese Journal of Applied Physics. https://doi.org/10.1143/JJAP.51.07GB01

Lewis, M. A., Staruch, R. M., & Chopra, R. (2015). Thermometry and ablation monitoring with ultrasound. In International Journal of Hyperthermia. https://doi.org/10.3109/02656736.2015.1009180

Li, S., Zhou, Z., Wu, S., & Wu, W. (2022). A Review of Quantitative Ultrasound-Based Approaches to Thermometry and Ablation Zone Identification Over the Past Decade. Ultrasonic Imaging. https://doi.org/10.1177/01617346221120069/FORMAT/EPUB

Pollock, D. D. (1991). Thermocouples: Theory and Properties. Boca Raton, FL: CRC Press.

Song, J. H., Yoo, Y., Song, T. K., & Chang, J. H. (2013). Real-time monitoring of HIFU treatment using pulse inversion. Physics in Medicine & Biology, 58(15), 5333. https://doi.org/10.1088/0031-9155/58/15/5333

Xiao, Y., Wan, C., Shahsafi, A., Salman, J., & Kats, M. A. (2020). Depth Thermography: Noninvasive 3D Temperature Profiling Using Infrared Thermal Emission. ACS Photonics. https://doi.org/10.1021/acsphotonics.9b01588

Zhao, L., Zhou, X., Dong, C., Wu, Y., & Wang, H. (2021). Ultrasonic Thermometry Algorithm Based on Inverse Quadratic Function. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(5), 1876–1884. https://doi.org/10.1109/TUFFC.2020.3036116

Downloads

Published

01/12/2022

How to Cite

ANDRADE, P. C. de .; MELO JÚNIOR, G. de .; VIEIRA, S. L. . Ultrasonic measurements of temperature in materials. Research, Society and Development, [S. l.], v. 11, n. 16, p. e104111637755, 2022. DOI: 10.33448/rsd-v11i16.37755. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37755. Acesso em: 17 nov. 2024.

Issue

Section

Engineerings