Ultrasonic measurements of temperature in materials
DOI:
https://doi.org/10.33448/rsd-v11i16.37755Keywords:
Temperature distribution; Ultrasound; Thermometry; Velocity; Monitoring.Abstract
Manufacturing processes and product development for industrial and medical applications are submitted to rigorous quality control. Quality assurance may provide accuracy of the physical quantities concerned to guarantee that defects do not arise when the product is developed. Quantities, such as temperature distribution play a significant role and must be monitored to prevent material damage. However, the number of techniques to sense temperature distribution inside a bulk material in a non-invasive and non-ionizing way is rare. Ultrasonic temperature estimation can overcome this issue, providing an alternative technique that matches such requirements to measure heating within materials. Here, we investigate ultrasonic velocity as a function of temperature in metals, polymers gel to mimic soft tissues (phantom), and biological tissues. Through a customized computational algorithm, we successfully estimated the heat source temperature at the surface, and throughout the length of the material.
References
Afaneh, A., Alzebda, S., Ivchenko, V., & Kalashnikov, A. N. (2011a). Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How. Physics Research International, 2011, e156396. https://doi.org/10.1155/2011/156396
Afaneh, A., Alzebda, S., Ivchenko, V., & Kalashnikov, A. N. (2011b). Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How. Physics Research International, 2011. https://doi.org/10.1155/2011/156396
Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G., & Crum, L. A. (2003). Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys., 49(4), 369–388. https://doi.org/10.1134/1.1591291
Barron, W. R. (1992). Principles of Infrared Thermometry. Sensors Magazine.
Bharat, S., Techavipoo, U., Kiss, M. Z., Liu, W., & Varghese, T. (2005). Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation. Ultrasound in Medicine & Biology, 31(3), 415–422. https://doi.org/10.1016/J.ULTRASMEDBIO.2004.12.020
Casper, A. J., Liu, D., Ballard, J. R., & Ebbini, E. S. (2013). Real-time implementation of a dual-mode ultrasound array system: In vivo results. IEEE Transactions on Biomedical Engineering, 60(10), 2751–2759. https://doi.org/10.1109/TBME.2013.2264484
Clegg, S. T., Das, S. K., Zhang, Y., Macfall, J., Fullar, E., & Samulski, T. V. (1995). Verification of a hyperthermia model method using MR thermometry. International Journal of Hyperthermia. https://doi.org/10.3109/02656739509022476
de Andrade, P. C. (2017). Desenvolvimento de um sistema de termometria por ultrassom para monitoramento de temperatura em materiais [Dissertação]. Universidade Federal de Goiás.
de Andrade, P. C., & Vieira, S. L. (2017). Monitoramento de temperatura interna em materiais por termometria ultrassônica. Revista Brasileira de Física Médica, 11(2), 34–37. https://doi.org/10.29384/rbfm.2017.v11.n2.p34-37
de Andrade, P. C., & Vieira, S. L. (2018). Development of an ultrasonic thermometry system. IEEE Latin America Transactions, 16(6). https://doi.org/10.1109/TLA.2018.8444385
de Oliveira, P. L., de Senneville, B. D., Dragonu, I., & Moonen, C. T. W. (2010). Rapid motion correction in MR-guided high-intensity focused ultrasound heating using real-time ultrasound echo information. NMR Biomed., 23(9), 1103–1108. https://doi.org/10.1002/nbm.1526
de Tommasi, F., Massaroni, C., Grasso, R. F., Carassiti, M., & Schena, E. (2021). Temperature Monitoring in Hyperthermia Treatments of Bone Tumors: State-of-the-Art and Future Challenges. Sensors 2021, Vol. 21, Page 5470, 21(16), 5470. https://doi.org/10.3390/S21165470
Fernández, J. L., Porta-Gándara, M. A., & Chargoy, N. (2005). Rapid on-site evaluation of thermal comfort through heat capacity in buildings. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2004.09.003
Gilbert, J. C., Onik, G. M., Hoddick, W. K., & Rubinsky, B. (1985). Real time ultrasonic monitoring of hepatic cryosurgery. Cryobiology. https://doi.org/10.1016/0011-2240(85)90179-8
Gupta, R. K. (2019). Partial Differential Equations: Finite Difference Methods. In Numerical Methods: Fundamentals and Applications. https://doi.org/10.1017/9781108685306.017
Ihara, I., & Takahashi, M. (2009). Ultrasound thermometry for monitoring internal temperature gradient in heated material. Proceedings - IEEE Ultrasonics Symposium. https://doi.org/10.1109/ULTSYM.2009.5441882
Ihara, I., Tomomatsu, T., Takahashi, M., Kosugi, A., Matsuya, I., & Yamada, H. (2013). Ultrasonic Thermometry for Temperature Profiling of Heated Materials. https://doi.org/10.1007/978-3-642-32180-1_13
Kalpakjian, S. and S. R. S. (1992). Manufacturing Processes for Engineering Materials (2nd Ed). Addison-Wesley Publishing Company.
Konofagou, E. E., Thierman, J., Karjalainen, T., & Hynynen, K. (2002). The temperature dependence of ultrasound-stimulated acoustic emission. Ultrasound in Medicine & Biology, 28(3), 331–338. https://doi.org/10.1016/S0301-5629(01)00525-7
Kosugi, A., Ihara, I., & Matsuya, I. (2012). Accuracy evaluation of surface temperature profiling by a laser ultrasonic method. Japanese Journal of Applied Physics. https://doi.org/10.1143/JJAP.51.07GB01
Lewis, M. A., Staruch, R. M., & Chopra, R. (2015). Thermometry and ablation monitoring with ultrasound. In International Journal of Hyperthermia. https://doi.org/10.3109/02656736.2015.1009180
Li, S., Zhou, Z., Wu, S., & Wu, W. (2022). A Review of Quantitative Ultrasound-Based Approaches to Thermometry and Ablation Zone Identification Over the Past Decade. Ultrasonic Imaging. https://doi.org/10.1177/01617346221120069/FORMAT/EPUB
Pollock, D. D. (1991). Thermocouples: Theory and Properties. Boca Raton, FL: CRC Press.
Song, J. H., Yoo, Y., Song, T. K., & Chang, J. H. (2013). Real-time monitoring of HIFU treatment using pulse inversion. Physics in Medicine & Biology, 58(15), 5333. https://doi.org/10.1088/0031-9155/58/15/5333
Xiao, Y., Wan, C., Shahsafi, A., Salman, J., & Kats, M. A. (2020). Depth Thermography: Noninvasive 3D Temperature Profiling Using Infrared Thermal Emission. ACS Photonics. https://doi.org/10.1021/acsphotonics.9b01588
Zhao, L., Zhou, X., Dong, C., Wu, Y., & Wang, H. (2021). Ultrasonic Thermometry Algorithm Based on Inverse Quadratic Function. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(5), 1876–1884. https://doi.org/10.1109/TUFFC.2020.3036116
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Patrícia Cardoso de Andrade; Gilberto de Melo Júnior; Sílvio Leão Vieira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.