Doses of silicon in the induction of water stress tolerance in Moringa oleifera Lam.

Authors

DOI:

https://doi.org/10.33448/rsd-v11i17.38478

Keywords:

Moringaceae; Abiotic stress; Elicitor; Water deficit; Mitigating.

Abstract

Moringa oleifera Lam. It is a multiple uses plant, whether used as human food (flowers, leaves, fruits and seeds) and animal (forage production), water treatment for human consumption, cosmetics and medicine industry, fuel, paper production. It is considered an exotic tree species that has adapted to the edaphoclimatic conditions of the semiarid region of the Brazilian Northeast, although the occurrence of water deficit reduces growth, limits development and compromises the physiology of the plant. Silicon is a water deficit mitigating agent. The objective of the present study was to evaluate the effect of silicon doses in inducing the tolerance of Moringa oleifera to water stress, on vegetative growth. The study was developed in partnership with the Center for Agricultural and Environmental Sciences of the State University of Paraíba, located in the municipality of Lagoa Seca - PB. The experiment was set up in a randomized block design, in split plots in a 5x5 double factorial scheme, with five irrigation depths (25, 50, 75, 100 and 125% of ETc) and five silicon doses (0, 3, 6 , 9 and 12 g of silicon dioxide per plant), totaling 25 treatments with four replications, with 100 experimental units which consisted of three useful plants. In the plots were the irrigation depths and in the sub-plots were the silicon doses. Irrigation depths exerted a significant influence on all growth variables studied.

References

Ali, M. H. & Talukder, M.S.U. (2008). Increasing water productivity in crop production—a synthesis. Agricultural water management, 95(11), 1201-1213. https://doi.org/10.1016/j.agwat.2008.06.008

Azam, A. Nouman, W. Rehman, U. Ahmed, U. Gull, T. & Shaheen, M. (2020). Adaptability of Moringa oleifera Lam. under different water holding capacities. South African Journal of Botany, 129, 299-303. 10.1016/j.sajb.2019.08.020

Boumenjel, A. Papadopoulos, A. & Ammari, Y. (2021). Growth response of Moringa oleifera (Lam) to water stress and to arid bio-climatic conditions. Agroforestry Systems, 95, 823- 833. 10.1007/s10457-020-00509-2

Costa, P. S. Ferraz, R. L. S. Dantas Neto, J. Martins, V. D. Viégas, P. R. A. Meira, K. S. Ndhlala, A. R. Azevedo, C. A. V. & Melo, A. S. (2024) Seed priming with light quality and Cyperus rotundus L. extract modulate the germination and initial growth of Moringa oleifera Lam. seedlings. Brazilian Journal of Biology, 84, e255836. 10.1590/1519-6984.255836

Domenico, M. Lina, C. & Francesca, B. (2019). Sustainable crops for food security: Moringa (Moringa oleifera Lam.). Encyclopedia of Food Security and Sustainability, 1,409-415. 10.1016/B978-0-08-100596-5.22574-2

EMBRAPA. (2016). Brasil está entre os países com maior área irrigada do mundo https://www.embrapa.br/busca-de-noticias/-/noticia/12990229/brasil-esta-entre-os-paises-com-maior-area-irrigada-do-mundo Acesso em 15/06/2022.

Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535.

Galgaye, G. G. Beshir, H. M. & Roro, A. G. (2020) Physiological responses of Moringa (Moringa stenopetala L.) seedlings to drought stress under greenhouse conditions, Southern Ethiopia. Asian Journal of Biotechnology, 12, 97-107. 10.3923/ajbkr.2020.97.107

Garcia, T. B. Soares, A. A. Costa, J. H. Costa, H. P. S. Neto, J. X. S. Rocha-Bezerra, L. C. B. Silva, F. D. A. Arantes, M. R. Sousa, D. O. B. Vasconcelos, I. M. & Oliveira, J. T. A. (2019). Gene expression and spatiotemporal localization of antifungal chitin-binding proteins during Moringa oleifera seed development and germination. Planta, 249, 1503-1519. 10.1007/s00425-019-03103-8

Ge, Y. Hawkesford, M. J. Rosolem, C. A. Mooney, S. J. Ashton, R. W. Evans, J. & Whalley, W. R. (2019). Multiple abiotic stress, nitrate availability and the growth of wheat. Soil and Tillage Research, 191, 171-184. https://doi.org/10.1016/j.still.2019.04.005

Karthickeyan, V. (2019). Effect of cetane enhancer on Moringa oleifera biodiesel in a thermal coated direct injection diesel engine. Fuel, 235, 538-550. https://doi.org/10.1016/j.fuel.2018.08.030

Kuczynska, A. Cardenia, V. Ogrodowicz, P. Kempa, M.; Rodriguez-Estrada, M. T. & Mikolajczak, K. (2019). Effects of multiple abiotic stresses on lipids and sterols profile in barley leaves (Hordeum vulgare L.). Plant Physiology and Biochemistry, 141, 215-224. 10.1016/j.plaphy.2019.05.033

Lima, C. A. D. Montenegro, A. A.D. A., DE Lima, J. L., Almeida, T. A. B., & Santos, J. C. N. D. (2020). Uso de coberturas alternativas do solo para o controle das perdas de solo em regiões semiáridas. Engenharia Sanitária e Ambiental, 25, 531-542. 10.1590/S1413-41522020193900

Moline, E. F. V. Barboza, E. Strazeio, S. C. & Blind, A. D (2015). Diferentes lâminas de irrigação na cultura da rúcula no sul de Rondônia. Nucleus, 12(1): 371-378. https://doi.org/10.3738/1982.2278.1082

Neri, D. K. P. Gomes, F. B. Moraes, J. C. Góes, G. B. & Marrocos, S. de T. P. (2009). Influência do silício na suscetibilidade de Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae) ao inseticida lufenuron e no desenvolvimento de plantas de milho. Ciência Rural, Santa Maria, 39(6), 1633-1638. https://doi.org/10.1590/S0103-84782009005000111

Oyeyinka, A. T., & Oyeyinka, S. A. (2018). Moringa oleifera as a food fortificant: Recent trends and prospects. Journal of the Saudi Society of Agricultural Sciences, 17,127-136. https://doi.org/10.1016/j.jssas.2016.02.002.

Prado, R. M. & Natale, W. (2004). Aplicação do silicato de cálcio em ArgissoloVermelho no desenvolvimento de mudas de maracujazeiro. Acta Scientiarum. Agronomy, Maringá, v. 26, n. 4, p. 387-393. 10.4025/actasciagron.v26i4.1714

Pereira, J. W. L. Melo Filho, P. A. Albuquerque, M .B. Nogueira, R. J. M. C. & Santos, R C. (2012). Mudanças bioquímicas em genótipos de amendoim submetidos a déficit hídrico moderado. Revista Ciência Agronômica, 43(4),766-773. https://doi.org/10.1590/S1806-66902012000400019

Salemi, F. Esfahani, M. N. & Tran, L. S. P. (2019). Mechanistic insights into enhanced tolerance of early growth of alfalfa (Medicago sativa L.) under low water potential by seed-priming with ascorbic acid or polyethylene glycol solution. Industrial Crops and Products, 137, 436-445. https://doi.org/10.1016/j.indcrop.2019.05.049

Santiago, M. T. B. & Bezerra Neto, E. (2017). Ecophysiology of Moringa oleifera Lam in function of different rainfall conditions. Revista Geama, 3(4), 236-241.

Scalon, S. P .Q. Mussury, R .M. Euzébio, V. L. M. Kodama, & F .M. Kissmann, C. (2011). Estresse hídrico no metabolismo e crescimento inicial de mudas de mutambo (Guazuma ulmifolia Lam.). Ciência Florestal, 21(4), 655-662. https://doi.org/10.5902/198050984510

Silva, E. C. A. Lucena, P. G. C. Nascimento, R. M. Santos, C.A. Araújo, R.P.S. & Nogueira, R. J. M. C. (2017). Mecanismos bioquímicos em Moringa oleifera Lam. para tolerância à salinidade. Acta Iguazu, 6(4), 54-71. https://doi.org/10.48075/actaiguaz.v6i4.16969

Silva, A. E. Ferraz, R. L. de S. Silva, J. P. da Costa, P. da S. Viegas, P. R. A. Brito Neto, J. F. de Melo, A. S. de Meira, K. S. Soares, C. S. Magalhães, I. D. & Medeiros, A. de S. (2019). Microclimate changes, photomorphogenesis, and water consumption by Moringa oleifera cuttings under light spectrum variations and exogenous phytohormones concentrations. Australian Journal Of Crop Science. 10.21475/ajcs.20.14.05.p2096

Singh, A. Kumar, A. Yadav, S. & Singh, I. K. (2019). Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene, v. 18, p. e100173. 10.1111/j.1399-3054.2009.01321.x

Soares, C. S. Silva, J. A. & Silva, G. N. Produção de coentro em diferentes espaçamentos dos canais hidropônicos. Pesquisa Agropecuária Pernambucana, Recife, v.22, p.1-5, 2017. https://doi.org/10.12661/pap.2017.001

Vasconcelos, M.C; (2013). Moringa oleifera Lam.: Aspectos Morfométricos, Fisiológicos e Cultivo em Gradiente de espaçamento.

Vasconcelos, I. M. & Oliveira, J. T. A. (2019). Gene expression and spatiotemporal localization of antifungal chitin binding proteins during Moringa oleifera seed development and germination. Planta, 249, 1503-1519. 10.1007/s00425-019-03103-8.

Yao, W. Zhou, B. Zhang, X. Zhao, K. Cheng, Z. & Jiang, T. (2019). Transcriptome analysis of transcription factor genes under multiple abiotic stresses in Populus simonii × P.nigra. Gene, 707,189-197. https://doi.org/10.1016/j.gene.2019.04.071

Published

21/12/2022

How to Cite

MELLO, D. S. C. R. F. de; DANTAS NETO, J. .; FERRAZ, R. L. de S. .; VIANA, P. M. de O. .; CANTALICE, R. S. .; COSTA, D. T. da .; PEREIRA, J. V. da S. .; DIAS , G. F. .; FARIAS, D. M. L. . Doses of silicon in the induction of water stress tolerance in Moringa oleifera Lam. Research, Society and Development, [S. l.], v. 11, n. 17, p. e89111738478, 2022. DOI: 10.33448/rsd-v11i17.38478. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38478. Acesso em: 24 nov. 2024.

Issue

Section

Agrarian and Biological Sciences