Predictive evaluation of in vitro growth of pathogenic bacteria under different conditions of pH, temperature and concentrations of sodium chloride and extracts of tamarind residues

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.3858

Keywords:

Predictive microbiology; Antimicrobial; Residue of fruit.

Abstract

Predictive microbiology has been applied, through mathematical models, in order to predict the behavior of microorganisms when exposed to varied growth conditions. This science has gained prominence since it allows to predict growth rates and lag phase duration of contaminating pathogenic microorganisms in food. In this context, this work aimed to evaluate the effect of temperature (10 to 45°C), pH (5.0 to 9.0), sodium chloride concentration (0 to 8.5%) and concentration of tamarind peel and seeds extract in 80% ethanol (0 to 10%) in the in vitro growth of Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella Enteritidis and Enterococcus faecalis. The parameters were evaluated according to fractional factorial design 24-1 plus 3 central points. The bacteria were incubated under the proposed conditions and the primary model of Baranyi and Roberts was adjusted to the experimental data (correlation coefficients between 0.72 and 1.00), being obtained growth rates and lag time. For most conditions tested, growth was inhibited for all bacteria, with rates ranging from -0.03 to -6.04 Log UFC/mL h. From statistical analysis, it was verified that the pH was the parameter that most influenced the inhibition of bacteria after. However, the extract of tamarind peel and seeds was the main component for the inhibition of S. Enteritidis. In this study, the in vitro growth of pathogenic bacteria in a culture medium containing tamarind peel or seeds extract was predicted. These extracts showed potential to be used in future applications as a natural antimicrobials.

References

Adelskov, J., Patel, B.K.C. (2016) A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. 3 Biotech, 6, 1–16.

Aguirre, J.S., Rodríguez, M. R., & Fernando, G.D.G. (2011) Effects of electron beam irradiation on the variability in survivor number and duration of lag phase of four food-borne organisms. International Journal of Food Microbiology, 149, 236-246.

Akkermans, S., Nimmegeers, P., & Impe, J.F. (2018) A tutorial on uncertainty propagation techniques for predictive microbiology models: A critical analysis of state-of-the-art techniques. International Journal of Food Microbiology, 282, 1-8.

BR1020170013685- Potencial antimicrobiano de extratos de resíduos de frutas exóticas (tamarindo (Tamarindus indica), granadilla (Passiflora ligularis), noni (Morinda citrifolia), dekopon (Citrus reticulata 'Shiranui'), sapoti (Manilkara zapota), tamarillo (Solanum betaceum) e mirtilo (Vaccinium myrtillus)), patente depositada no Instituto Nacional de Propriedade Intelectual em 23/01/2017.

Clinical and Laboratory Standards Institute (CLSI) (2015) Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved standard- Twelfth Edition. Wayne: Clinical and Laboratory Standards Institute.

Couvert, O., Guegan, S., Hezard, B., Huchet, V., Lintz, A., Thuault, D., & Stahl, V. (2017) Modeling carbon dioxide effect in a controlled atmosphere and itsinteractions with temperature and pH on the growth of L. monocytogenes and P. fluorescens. Food Microbiolgy, 68, 89-96.

Gonçalves, L.D.A., Picolli, R.H., Peres, A.P., & Saúde, A.V. (2017) Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values. Brazilian Journal of Microbiology, 48 (2), 352-358.

Hoel, S., Vadstein, O., & Jakobsen, A. N. (2018) Growth of mesophilic Aeromonas salmonicida in an experimental model of nigiri sushi during cold storage. International Journal of Food Microbiology, 285, p. 1-6.

ICMSF - International Commission on Microbiological Specifications for Foods (1996) Microrganisms in Foods 5: Microbiological Specifications of Food Pathogens. London: Blackie Academic and Professional.

Iliadis, I., Daskalopoulou, A., Simões, M., & Giaouris, E. (2018) Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. enteritidis and typhimurium under low nutrient food-related conditions. Food Research International, 107, 10-18.

Juneja, V.K., Golden, C.E., Misha, A., & Harrison, M.A. (2019) Predictive model for growth of Bacillus cereus during cooling of cooked rice. International Journal of Food Microbiology, 290, 49–58.

Kavuncuoglu, H., Kavuncuoglu, E., Karatas, S.M., Osman, Benli, B., Sagdic, O., & Yalcin, H. (2018) Prediction of the antimicrobial activity of walnut (Juglans regia L.) kernel aqueous extracts using artificial neural network and multiple linear regression. Journal of Microbiological Methods, 148, 78-86.

Koneman, W.E., Allen, S.D., Janda, W.M., Schreckenberger, P.C., & Winn Jr., W.C. (2001) Bacilos Gram-Negativos não-fermentadores. In: Koneman, E.W. (Ed.) Diagnóstico microbiológico - Texto e Atlas colorido. Rio de Janeiro: Médica e Científica.

Krishnan, K.R., Babuskin, R., Babu, P.A.S., Sivarajan, M., & Sukumar, M. (2015) Evaluation and predictive modeling the effects of spice extracts on raw chicken meat stored at different temperatures. Journal of Food Engineering, 166, 29-37.

Nyhan, L., Begley, M., Mutel, A., Qu, Y., Johnson, N., & Callanan, M. (2018) Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices. Food Microbiology, 74, 75-85.

Palleroni, N.J. (2009) Pseudomonas. In: Bergey´s Manual of Systematic Bacteriology. Nova Jersey: John Wiley & Sons, Inc., in association with Bergey's Manual Trust.

Pereira, A.S., Shitsuka, D.M., Parreira, F.J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1. Acesso em: 21 Abril 2020.

Rodrigues, H.G.A, Siqueira, A.C.P., & Santana, L.C.L.A. (2020). Aplicação de revestimentos comestíveis à base de quitosana e fécula de mandioca incorporados com extrato da semente de tamarindo na conservação de goiabas. Research, Society and Development, 9 (6), e119963695, 1-25.

Rodrigues, M.I., & Iemma, A.F. (2009) Planejamento de experimentos e otimização de processos. Campinas: Casa do Espírito Amigo Fraternidade Fé e Amor.

Rubab, M., Shahbaz, H.M., Olaimat, A.N., & Oh, D.-H. (2018) Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors and Bioelectronics, 105, 49–57.

Santos, T.R.J., Barbosa, P.F., Antunes, H.G.R., Narain, N. & Santana, L.C.L.A. (2019) Granadilla seed extract as antimicrobial and bioactive compounds source: mathematical modelling of extraction conditions. Quality Assurance and Safety of Crops & Foods, 11(2), 157-170.

Schlei, K.P. et al. (2018). Predictive microbiology: general aspects and tendencies. Perspectivas da Ciência e Tecnologia, 10(1): 52-68.

Stringer, S.C., & Metris, A. (2018) Predicting bacterial behaviour in sous vide food. International Journal of Gastronomy and Food Science, 13, 117–128.

Tarlak, F., Ozdemir, M., & Melikoglu, M. (2018) Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp. on sliced mushroom (Agaricus bisporus). International Journal of Food Microbiology, 266, 274-281.

Teleken, J.T., Galvão, A.C., Robazza, & W.S. (2018) Use of modified Richards model to predict isothermal and non-isothermal microbial growth. Brazilian Journal of Microbiology, 49, p. 614-620, 2018.

Vercammen, D., Telen, D., Nimmegeers, P., Janssens, A., Akkermans, S., Fernandez, E.N., Logist, F., & Impe, J.V. (2017) Application of a dynamic metabolic flux algorithm during a temperature-induced lag phase. Food and Bioproducts Processing, 102, 1-19.

Xie, X., Tan, T., Xu, A., Deng, K., Zeng, Y., & Huang, H. (2019) UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout. Sensors and Actuators, B: Chemical, 279, 289–297.

Yang, Q., Lu, Y., Zhang, M., Gong, Y., Li, Z., Tran, N.T., He, Y., Zhu, C., Lu, Y., Zhang, Y., & Li, S. (2019) Lactic acid bacteria, Enterococcus faecalis Y17 and Pediococcus pentosaceus G11, improved growth performance, and immunity of mud crab (Scylla paramamosain). Fish and Shellfish Immunology, 93, 135–143.

Published

04/05/2020

How to Cite

SOARES, L. de A.; SANTANA, L. C. L. de A. Predictive evaluation of in vitro growth of pathogenic bacteria under different conditions of pH, temperature and concentrations of sodium chloride and extracts of tamarind residues. Research, Society and Development, [S. l.], v. 9, n. 7, p. e162973858, 2020. DOI: 10.33448/rsd-v9i7.3858. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3858. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences