Luminous restriction and chemical control with glyphosate in integrated management of Urochloa brizantha L.

Authors

DOI:

https://doi.org/10.33448/rsd-v11i17.38758

Keywords:

Dose reduction; Epicuticular wax; Herbicide; Morphoanatomy; Shading.

Abstract

The objective was to evaluate the effect of different light conditions in the cultivation environment on the control of U. brizantha by glyphosate. The experimental design was in a plot scheme divided into randomized blocks with five replications. In the plots, environments with light conditions were allocated: full sun, intermittent shading with 3 hours of sun/day, and continuous shading. In the subplots, the herbicide doses: 0, 480, 960, and 1440 g. a. e. glyphosate ha-1 applied to U. brizantha plants. The control of U. brizantha by the herbicide glyphosate was more efficient in shaded environments, either with continuous or intermittent shading, in relation to full sun, indicating that the conditions of light influenced the action of the herbicide. At 35 DAA, control values of U. brizantha above 80% were observed from the 765 g. a. e ha-1 dose of glyphosate for treatments with shading. Already in conditions of full sun, 65% of control values were reached in the highest dose, which is considered unsatisfactory for the management of this species. U. brizantha submitted to light restriction had the content of epicuticular wax, starch, soluble and total sugar reduced; however, the leaf area was larger in these environments compared to full sun. The reserve content, epicuticular wax, and leaf area variables are affected by shading with a direct relationship with the greater control of U. brizantha by glyphosate in this cultivation condition.

References

Agostini, L. P., Dettogni, R. S., dos Reis, R. S., Stur, E., dos Santos, E. V. W., Ventorim, D. P., & Louro, I. D. (2020). Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Science of The Total Environment, 705, 135808. https://doi.org/10.1016/j.scitotenv.2019.135808

ALAM., (1974). Recomendaciones sobre unificación de los sistemas de evaluación en ensayos de control de malezas. Associación latinoamericana de malezas, 1(1), 35-38.

Almeida, P. R., Rodrigues, M. V., & Imperador, A. M. (2019). Toxicidade aguda (LC50) e efeitos comportamentais e morfológicos de formulado comercial com princípio ativo glifosato em girinos de Physalaemus cuvieri (Anura, Leptodactylidae) e Rhinella icterica (Anura, Bufonidae). Engenharia Sanitaria e Ambiental, 24(6), 1115–1125. https://doi.org/10.1590/s1413-41522019166886

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873. https://doi.org/10.1016/j.chemosphere.2013.06.041

Artru, S., Lassois, L., Vancutsem, F., Reubens, B., & Garré, S. (2018). Sugar beet development under dynamic shade environments in temperate conditions. European Journal of Agronomy, 97, 38–47. https://doi.org/10.1016/j.eja.2018.04.011

Beckie, H. J. (2011). Herbicide-resistant weed management: Focus on glyphosate. Pest Management Science, n/a-n/a. https://doi.org/10.1002/ps.2195

Bellaloui, N., Reddy, K. N., Zablotowicz, R. M., & Mengistu, A. (2006). Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean. Journal of Agricultural and Food Chemistry, 54(9), 3357–3364. https://doi.org/10.1021/jf053198l

Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 3. https://doi.org/10.1186/s12302-016-0070-0

Brant, M. C., Tuffi Santos, L. D., Freitas, I. C., Frazão, L. A., Silva, M. S. N., Machado, V. D., & Santos, M. V. (2018). Productivity, control, and decomposition of irrigated forage species under glyphosate doses and shading. Planta Daninha, 36, e018175761. https://doi.org/10.1590/s0100-83582018360100130

Cassigneul, A., Benoit, P., Bergheaud, V., Dumeny, V., Etiévant, V., Goubard, Y., & Alletto, L. (2016). Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study. Science of The Total Environment, 545–546, 582–590. https://doi.org/10.1016/j.scitotenv.2015.12.052

Costa, G. A., Santos, L. D. T., Ferreira, G. A. de P., Cruz, L. R. da, Machado, V. D., & Rocha, L. M. (2018). Levels of shading and application of glyphosate and carfentrazone-ethyl in the control of Macroptilium atropurpureum. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(12), 819–824. https://doi.org/10.1590/1807-1929/agriambi.v22n12p819-824

Costa, G. A., Tuffi-Santos, L. D., Santos, S. A. dos, da Cruz, L. R., Sant’Anna-Santos, B. F., Santos, I. T. dos, & Tanaka, F. A. O. (2020). Efficiency of glyphosate and carfentrazone-ethyl in the control of Macroptilium atropurpureum (Dc.) Urb. Under different light intensities. South African Journal of Botany, 131, 302–309. https://doi.org/10.1016/j.sajb.2020.02.028

Dill, G. M., Sammons, R. D., Feng, P. C. C., Kohn, F., Kretzmer, K., Mehrsheikh, A., & Haupfear, E. A. (2010). Glyphosate: Discovery, development, applications, and properties. In V. K. Nandula (Org.), Glyphosate Resistance in Crops and Weeds (p. 1–33). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470634394.ch1

Duarte, C. F. D., Prochera, D. L., Paiva, L. M., Fernandes, H. J., Biserra, T. T., Cassaro, L. H., … Fernandes, R. L. (2019). Morfogênese de braquiárias sob estresse hídrico. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71(5), 1669–1676. https://doi.org/10.1590/1678-4162-10844

Duke, S. O., & Powles, S. B. (2008). Glyphosate: A once-in-a-century herbicide: Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64(4), 319–325. https://doi.org/10.1002/ps.1518

Fernando, N., Manalil, S., Florentine, S. K., Chauhan, B. S., & Seneweera, S. (2016). Glyphosate resistance of C3 and C4 weeds under rising atmospheric CO2. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00910

Ferreira, G. A. P., Donato, L. M. S., Souza, R. F., Montes, W. G., Vaz, V., & Tuffi Santos, L. D. (2022a). Adequacy of glyphosate doses in the Merremia cissoides (Lam.) Hallier f. Control as a function of light intensity in the growth environments. Journal of Environmental Science and Health, Part B, 1–10. https://doi.org/10.1080/03601234.2022.2151790

Ferreira, G. A. de P., Montes, W. G., Silva Donato, L. M., Faria, R. M., & Tuffi Santos, L. D. (2022b). Glyphosate doses should be lower for shaded environments: Light and the sensitivity of Euphorbia heterophylla. International Journal of Pest Management, 1–8. https://doi.org/10.1080/09670874.2022.2056254

Fidalski, J., Barbosa, G. M. de C., Auler, P. A. M., Pavan, M. A., & Beraldo, J. M. G. (2009). Qualidade física do solo sob sistemas de preparo e cobertura morta em pomar de laranja. Pesquisa Agropecuária Brasileira, 44(1), 76–83. https://doi.org/10.1590/S0100-204X2009000100011

Food and Agriculture Organization of the United Nations/World Health Organization (FAO), (2016). Pesticide Residues in Food 2016: toxicological evaluations. Geneva.

Freitas, A. F., Maciel, J. C., Silva, M. M., & Santos, J. B. (2019). Urochloa brizantha interference in the phaseolus vulgaris radicular system fertilized with phosphorus. Planta Daninha, 37, e019185690. https://doi.org/10.1590/s0100-83582019370100055

Gélinas, P., Gagnon, F., & McKinnon, C. (2018). Wheat preharvest herbicide application, whole-grain flour properties, yeast activity and the degradation of glyphosate in bread. International Journal of Food Science & Technology, 53(7), 1597–1602. https://doi.org/10.1111/ijfs.13741

Gomes, L. J. P., Santos, J. I., Gasparino, E. C., & Correia, N. M. (2017). Chemical control and morphoanatomical analysis of leaves of different populations of sourgrass. Planta Daninha, 35(0). https://doi.org/10.1590/s0100-83582017350100008

Green, J. M. (2012). The benefits of herbicide-resistant crops: Benefits of herbicide-resistant crops. Pest Management Science, 68(10), 1323–1331. https://doi.org/10.1002/ps.3374

Hodge, J.E., & Hofreiter, B.T., (1962). Determination of reducing sugars and carbohydrates. In: Whistler, R.L. & Wolfrom, M.L., Eds., Methods in Carbohydrate Chemistry, Academic Press, New York, 380-394.

Jiang, C.-D., Wang, X., Gao, H.-Y., Shi, L., & Chow, W. S. (2011). Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiology, 155(3), 1416–1424. https://doi.org/10.1104/pp.111.172213

La Cecilia, D., Tang, F. H. M., Coleman, N. V., Conoley, C., Vervoort, R. W., & Maggi, F. (2018). Glyphosate dispersion, degradation, and aquifer contamination in vineyards and wheat fields in the Po Valley, Italy. Water Research, 146, 37–54. https://doi.org/10.1016/j.watres.2018.09.008

Landrigan, P. J., & Belpoggi, F. (2018). The need for independent research on the health effects of glyphosate-based herbicides. Environmental Health, 17(1), 51. https://doi.org/10.1186/s12940-018-0392-z

Li, H., Jiang, D., Wollenweber, B., Dai, T., & Cao, W. (2010). Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 33(4), 267–275. https://doi.org/10.1016/j.eja.2010.07.002

Lima, S. F., Pereira, L. S., Sousa, G. D. D., Oliveira, G. S. D., & Jakelaitis, A. (2019). Suppression of Urochloa brizantha and U. ruziziensis by glyphosate underdoses. Revista Caatinga, 32(3), 581–589. https://doi.org/10.1590/1983-21252019v32n302rc

Martins, A. D., Sousa, L. F., Nóbrega, E. B. da, Donizetti, J. G. dos S., Santos, A. C. dos, & Sousa, J. T. L. de. (2014). Relação do nível de sombreamento artificial e da adubação sobre o desenvolvimento da forrageira Urochloa brizantha cv. Marandu. Revista Brasileira de Saúde e Produção Animal, 15(4), 994–1005. https://doi.org/10.1590/S1519-99402014000400005

Machado, A. F. L., Ferreira, L. R., Santos, L. D. T., Santos, J. B., Ferreira, F. A., & Viana, R. G. (2009). Absorção, translocação e exsudação radicular de glyphosate em clones de eucalipto: Clones. Planta Daninha, 27(3), 549–554. https://doi.org/10.1590/S0100-83582009000300016

McCready, R. M., Guggolz, Jack., Silviera, Vernon., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9), 1156–1158. https://doi.org/10.1021/ac60045a016

Meng, F., Cao, R., Yang, D., Niklas, K. J., & Sun, S. (2014). Trade-offs between light interception and leaf water shedding: A comparison of shade- and sun-adapted species in a subtropical rainforest. Oecologia, 174(1), 13–22. https://doi.org/10.1007/s00442-013-2746-0

Ministério da Agricultura Pecuária e Abastecimento (MAPA) (2020), AGROFIT. agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons.

Myers, J. P., Antoniou, M. N., Blumberg, B., Carroll, L., Colborn, T., Everett, L. G., & Benbrook, C. M. (2016). Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environmental Health, 15(1), 19. https://doi.org/10.1186/s12940-016-0117-0

Parissi Z.M., & Koukoura Z., (2009). Effect of fertilization and artificial shading on N and various mineral content of herbaceous species. In : Papachristou T.G. (ed.), Parissi Z.M. (ed.), Ben Salem H. (ed.), Morand-Fehr P. (ed.). Nutritional and foraging ecology of sheep and goats. Zaragoza : CIHEAM / FAO / NAGREF, p. 159-164 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 85).

Pedrosa, A.W.; Favarin, J.L.; Vasconcelos, A.L.S. de; Carvalho, B.V.; Oliveira, F.B.; & Neves, G.B., (2014). Brachiaria residues fertilized with nitrogen in coffee fertilization. Coffee Science, 9(3), 366-373.

Plummer, D.T. (1978). An introduction to practical biochemistry. (2nd ed.), McGraw-Hill.

Procópio, S. O., Ferreira, E. A., Silva, E. A. M., Silva, A. A., Rufino, R. J. N., & Santos, J. B. (2003). Estudos anatômicos de folhas de espécies de plantas daninhas de grande ocorrência no Brasil: III - Galinsoga parviflora, Crotalaria incana, Conyza bonariensis e Ipomoea cairica. Planta Daninha, 21(1), 1–9. https://doi.org/10.1590/S0100-83582003000100001

R Development Core Team., (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Salisbury, F.B.; & Ross, C.W., (1992). Photosynthesis: environmental and agricultural aspects. Plant physiology. Wadsworth publishing company, Belmont, CA, 286, 249-265.

Santos, M. V., Ferreira, E. A., Valadão, D., Oliveira, F. L. R. de, Machado, V. D., Silveira, R. R., & Souza, M. de F. (2017). Brachiaria physiological parameters in agroforestry systems. Ciência Rural, 47(5). https://doi.org/10.1590/0103-8478cr20160150

Santos, M. V., Ferreira, F. A., Freitas, F. C. L., Tuffi Santos, L. D., Viana, J. M., Rocha, D. C. C., & Fialho, C. M. T. (2007). Controle de Brachiaria brizantha, com uso do glyphosate, na formação de pastagem de Tifton 85 (Cynodon spp.). Planta Daninha, 25(1), 149–155. https://doi.org/10.1590/S0100-83582007000100016

Santos, S.A. dos ; Tuffi Santos, L.D. ; Sant'Anna-Santos, B.F. ; Tanaka, F.A.O. ; Silva, L.F. ; Santos Júnior, A. dos., (2015). Influence of shading on the leaf morphoanatomy and tolerance to glyphosate in Commelina benghalensis L. and Cyperus rotundus L. Australian Journal of Crop Science. 9, 135-142. http://www.cropj.com/santos_9_2_2015_135_142.pdf

Shaner, D. L., Lindenmeyer, R. B., & Ostlie, M. H. (2012). What have the mechanisms of resistance to glyphosate taught us?: Glyphosate mechanisms of resistance. Pest Management Science, 68(1), 3–9. https://doi.org/10.1002/ps.2261

Silva, A.A; Silva J.F., (2007). Biologia de Plantas Daninhas. In: SILVA, Antônio Alberto. Tópicos em Manejo de Plantas Daninhas. Viçosa: UFV.

Silva, D. V., Freitas, M. A. M., Souza, M. F., Queiroz, G. P., Melo, C. A. D., Silva, A. A., … Reis, M. R. (2016). Glyphosate herbicide use in Urochloa brizantha management in intercropping with herbicide-resistant maize. Planta Daninha, 34(1), 133–141. https://doi.org/10.1590/S0100-83582016340100014

Silva, U. R. da, Timossi, P. C., Almeida, D. P., & Lima, S. F. (2013). Eficácia do glyphosate na dessecação de espécies de Urochloa. Revista Brasileira de Herbicidas, 12(2), 202. https://doi.org/10.7824/rbh.v12i2.221

Schmidt, D., Caron, B. O., Pilau, J., Nardino, M., & Elli, E. F. (2017). Morfoanatomia foliar de azevém no sub-bosque de espécies arbóreas em sistemas agroflorestais. Revista Ceres, 64(4), 368–375. https://doi.org/10.1590/0034-737x201764040005

Skoss, J. D. (1955). Structure and composition of plant cuticle in relation to environmental factors and permeability. Botanical Gazette, 117(1), 55–72. https://doi.org/10.1086/335891

Taiz L, Zeiger E, Møller IM, Murphy A., (2017). Fisiologia e desenvolvimento vegetal. (6th. Ed.) Artmed

Tomlin, C., (2000). British crop protection council (Orgs.). The pesticide manual: a world compendium. (12th ed.), Farnham: British Crop Protection Council.

Travaglia, C., Masciarelli, O., Fortuna, J., Marchetti, G., Cardozo, P., Lucero, M., & Reinoso, H. (2015). Towards sustainable maize production: Glyphosate detoxification by Azospirillum sp. and Pseudomonas sp. Crop Protection, 77, 102–109. https://doi.org/10.1016/j.cropro.2015.07.003

Tuffi Santos, L. D., Cruz, L. R. D., Santos, S. A. D., Sant’Anna-Santos, B. F., Santos, I. T. D., Oliveira, A. M. D., & Faria, R. M. (2015). Phenotypic plasticity of Neonotonia wightii and Pueraria phaseoloidesgrown under different light intensities. Anais da Academia Brasileira de Ciências, 87(1), 519–528. https://doi.org/10.1590/0001-3765201520140017

Viana, R. G., Tuffi Santos, L. D., Demuner, A. J., Ferreira, F. A., Ferreira, L. R., Ferreira, E. A., & Santos, M. V. (2010). Quantificação e composição química de cera epicuticular de folhas de eucalipto. Planta Daninha, 28(4), 753–758. https://doi.org/10.1590/S0100-83582010000400007

Zoller, O., Rhyn, P., Rupp, H., Zarn, J. A., & Geiser, C. (2018). Glyphosate residues in Swiss market foods: Monitoring and risk evaluation. Food Additives & Contaminants: Part B, 11(2), 83–91. https://doi.org/10.1080/19393210.2017.1419509

Downloads

Published

24/12/2022

How to Cite

SILVA, M. S. N. e .; SANTOS, L. D. T. .; DONATO, L. M. S. .; FERREIRA, G. A. de P. .; BARBOSA, D. M. C. do R. .; BARROS, R. E. .; REIS, M. M. . Luminous restriction and chemical control with glyphosate in integrated management of Urochloa brizantha L. Research, Society and Development, [S. l.], v. 11, n. 17, p. e177111738758, 2022. DOI: 10.33448/rsd-v11i17.38758. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38758. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences