Evaluation of the lyophilization process on the stability of pigments produced by Monascus purpureus CCT 3802

Authors

DOI:

https://doi.org/10.33448/rsd-v11i17.38807

Keywords:

Stability; Drying; Monascus pigments.

Abstract

Monascus pigments, in addition to having attractive colors, have high coloring power, however, they are unstable at high temperatures and extreme pH. In this context, some alternative methods have been emerging to favor its stability, such as freeze drying. This study evaluated the effect of lyophilization on the stability against temperature (50 to 90 ºC) and pH (3 to 8) of Monascus purpureus CCT 3802 pigments produced by submerged fermentation. Thermal stability was based on the determination of the thermal degradation constant (Kd), half-life (t1/2), activation energy (Ea), decimal reduction value (D), Z value and the thermodynamic analysis that were calculated before and after lyophilization. The crude extract showed a value of Kd = 0.232 h-1, t1/2 = 3.0 h and D value = 9.93 h at 90 ºC and Z value = 31.25 h. However, the lyophilized extract showed Kd = 0.167 h-1, t1/2 = 4.2 h and D value = 13.84 h at 90 ºC and Z value = 58.82 h, demonstrating greater stability of this extract at high temperatures. The results obtained in relation to pH stability demonstrated that lyophilization showed less pigment degradation, with the percentage of pigments varying from 100 to 96% in 60 min. Therefore, freeze drying technology proved to be an excellent alternative to improve the stability of the pigments synthesized by Monascus purpureus CCT 3802.

References

Abdollahi, F., Jahadi, M., & Ghavami, M. (2021). Thermal stability of natural pigments produced by Monascus purpureus in submerged fermentation. Food Science & Nutrition, 9(9), 4855-4862. https://doi.org/10.1002/fsn3.2425

Agboyibor, C., Kong, W. B., Chen, D., Zhang, A. M., & Niu, S. Q. (2018). Monascus pigments production, composition, bioactivity and its application: A review. Biocatalysis and Agricultural Biotechnology, 16, 433-447. https://doi.org/10.1016/j.bcab.2018.09.012

Agboyibor, C; Kong, W. B.; Zhang, A. M.; Niu, S. Q. (2019). Nutrition regulation fot the production of Monascus red and yellow pigment with submerged fermentation by Monascus purpureus. Biocatalysis and Agricultural Biotechnology, n. 21, p. 1-7, 2019. https://doi.org/10.1016/j.bcab.2019.101276

Ali, I., Al-Dalali, S., Hao, J., Ikram, A., Zhang, J., Xu, D., & Cao, Y. (2022). The stabilization of Monascus pigment by formation of Monascus pigment-sodium caseinate complex. Food Chemistry, 384, 132480. https://doi.org/10.1016/j.foodchem.2022.132480

Almeida, A. B., Santos, N. H., Lima, T. M., Santana, R. V., Filho, J. G. O., Peres, D. S., & Egea, M. B. (2021). Pigment bioproduction by Monascus purpureus using corn bran, a byproduct of the corn industry. Biocatalysis and Agricultural Biotechnology, 32, 101931. https://doi.org/10.1016/j.bcab.2021.101931

Bastos, B., Grandini, C., Rodrigues, S., Santos, M. A., Lopes, T., & Antelo, F. (2015). Avaliação da cinética de degradação térmica de betalaínas extraídas de Beta Vulgaris L. Blucher Chemical Engineering Proceedings, 1(2), 3916-3923. 10.5151/chemeng-cobeq2014-0765-24116-172169

Bezerra, D. P., Santana, J. M., Nunes, R. I., de Oliveira, J. B., de Souza, W. W., Santos, P. R. F., & Maciel, O. S. (2015). Analise dos Parâmetros Físicos: Sólidos Totais, Sólidos Sedimentáveis, Sólidos Totais Dissolvidos e Sólidos Suspensos nas Águas do Vale do Açu. Blucher Chemistry Proceedings, 3(1), 746-754. 10.5151/chenpro-5erq-am17

Carvalho, J. C. D., Oishi, B. O., Pandey, A., & Soccol, C. R. (2005). Biopigments from Monascus: strains selection, citrinin production and color stability. Brazilian Archives of Biology and Technology, 48(6), 885-894. https://doi.org/10.1590/S1516-89132005000800004

Heidtmann, R. B., Duarte, S. H., Pereira, L. P. D., Braga, A. R. C., & Kalil, S. J. (2012). Caracterização cinética e termodinâmica de β-galactosidase de Kluyveromyces marxianus CCT 7082 fracionada com sulfato de amônio. Brazilian Journal of Food Technology, 15(1), 41-49. https://doi.org/10.1590/S1981-67232012000100005

Jung, H., Choe, D., Nam, K. Y., Cho, K. H., & Shin, C. S. (2011). Degradation patterns and stability predictions of the original reds and amino acid derivatives of Monascus pigments. European food research and technology, 232(4), 621-629. https://doi.org/10.1007/s00217-011-1427-7

Keivani, H., & Jahadi, M. (2022). Solid-state fermentation for the production of Monascus pigments from soybean meals. Biocatalysis and Agricultural Biotechnology, 46, 102531. https://doi.org/10.1016/j.bcab.2022.102531

Lv, J., Zhang, B. B., Liu, X. D., Zhang, C., Chen, L., Xu, G. R., & Cheung, P. C. K. (2017). Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: the relation ship between fermentation conditions and mycelial morphology. Journal of Bioscience and Bioengineering, 124(4), 452-458. DOI: https://doi.org/10.1016/j.jbiosc.2017.05.010

Mercali, G. D., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. F. (2013). Degradation kinetics of anthocyanins in acerola pulp: Comparison between ohmic and conventional heat treatment. Food chemistry, 136(2), 853-857. https://doi.org/10.1016/j.foodchem.2012.08.024

Nnolim, N. E., Okoh, A. I., & Nwodo, U. U. (2020). Proteolytic bacteria isolated from agro-waste dumpsites produced keratinolytic enzymes. Biotechnology Reports, 27, e00483. https://doi.org/10.1016/j.btre.2020.e00483

Oliveira, C. F. D., Costa, J. P. V., & Vendruscolo, F. (2019). Maltose syrup residue as the substrate for Monascus pigments production. Biocatalysis and Agricultural Biotechnology, 18, 101101. 10.1016/j.bcab.2019.101101

Panesar, R., Kaur, S., & Panesar, P. S. (2015). Production of microbial pigments utilizing agro-industrial waste: a review. Current Opinion in Food Science, 1, 70-76. https://doi.org/10.1016/j.cofs.2014.12.002

Pereda, J. A. O; Rodríguez, M. I. C.; Álvarez, L. F.; Sanz, M. L. G.; Minguillón, G. D. G. F.; Perales, L. H.; Cortecero, M. D. S. (2005). Tecnologia de Alimentos: Componentes dos Alimentos e Processos. Porto Alegre: Artmed.

Peron, D. V., Fraga, S., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity. Food Chemistry, 232, 836-840. 10.1016/j.foodchem.2017.04.088

Pineda-Insuasti, J. A., Duarte-Trujillo, A. S., Ayala-Pastaz, K. B., Soto-Arroyave, C. P., & Pineda-Soto, C. A. (2016). Produção de metabólitos por Monascus spp.: Uma revisão. ICIDCA. Sobre os derivados da cana-de-açúcar, 50 (2), 43-52.

Priatni, S. (2015). Encapsulation and Stability Study of Monascus Fermented Rice Extract. Procedia Chemistry, 17, 189-193. https://doi.org/10.1016/j.proche.2015.12.118

Reis, R. C., Viana, E. D. S., Jesus, J. L., Lima, L. F., Neves, T. T. D., & Conceição, E. A. D. (2015). Compostos bioativos e atividade antioxidante de variedades melhoradas de mamão. Ciência Rural, 45(11), 2076-2081. https://doi.org/10.1590/0103-8478cr20140776

Rosa, C. H., Antelo, F., & Rosa, G. R. (2018). Kinetics of thermal‐degradation of betanins: A teaching mini‐project for undergraduates employing the red beet. Journal of Food Science Education, 17(4), 104-110. https://doi.org/10.1111/1541-4329.12147

Selim, K. A., Khalil, K. E., Abdel-Bary, M. S., & Abdel-Azeim, N. A. (2008). Extraction, encapsulation and utilization of red pigments from roselle (Hibiscus sabdariffa L.) as natural food colourants. Alexandria Journal of Food Science and Technology. 7-20. 10.21608/ajfs.2008.19642

Silva, N. L., Crispim, J. M., & Vieira, R. P. (2017). Kinetic and thermodynamic analysis of anthocyanin thermal degradation in acerola (Malpighia emarginata DC) pulp. Journal of Food Processing and Preservation, 41(4), 1-7. https://doi.org/10.1111/jfpp.13053

Silva, J. R., Silva, T. T., Silva, E. K., Silva, S. P., Moreira, K. A., & Ribeiro, D. S. (2018). Produção de pigmentos de Monascus ruber CCT 3802 utilizando casca de mandioca como substrato. Revista Brasileira de Agrotecnologia, 8(3), 26-31.

Silveira, S. T., Daroit, D. J., Sant’Anna, V., & Brandelli, A. (2013). Stability modeling of red pigments produced by Monascus purpureus in submerged cultivations with sugarcane bagasse. Food and Bioprocess Technology, 6(4), 1007-1014. https://doi.org/10.1007/s11947-011-0710-8

Teng, S. S., & Feldheim, W. (2001). Anka and anka pigment production. Journal of Industrial Microbiology and Biotechnology, 26(5), 280-282. https://doi.org/10.1038/sj.jim.7000126

Vendruscolo, F., Müller, B. L., Moritz, D. E., de Oliveira, D., Schmidell, W., & Ninow, J. L. (2013). Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatalysis and Agricultural Biotechnology, 2(3), 278-284. https://doi.org/10.1016/j.bcab.2013.03.008

Vendruscolo, F., Schmidell, W., de Oliveira, D., & Ninow, J. L. (2017). Kinetic of orange pigment production from Monascus ruber on submerged fermentation. Bioprocess and Biosystems Engineering, 40(1), 115-121. 10.1007/s00449-016-1679-5

Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Sterilization of foodstuffs using radio frequency heating. Journal of Food Science, 68(2), 539-544. 10.1111/j.1365-2621.2003.tb05708.x

Wang, L., Dai, Y., Chen, W., Shao, Y., & Chen, F. (2016). Effects of light intensity and color on the biomass, extracellular red pigment, and citrinin production of Monascus ruber. Journal of Agricultural and Food Chemistry, 64(50), 9506-9514. https://doi.org/10.1021/acs.jafc.6b04056

Yamaguchi, S. K. F., Krebs, C. S., Bertolli, S. L., & Carvalho, L. F. (2017). Liofilização de produtos lácteos: Uma revisão. Revista Espacios, 38(22), 1-12.

Yuliana, A., Singgih, M., Julianti, E., & Blanc, P. J. (2017). Derivates of azaphilone Monascus pigments. Biocatalysis and Agricultural Biotechnology, 9, 183-194. https://doi.org/10.1016/j.bcab.2016.12.014

Published

21/12/2022

How to Cite

SILVA, J. R. da .; SILVA, T. T. da .; QUEIROZ, A. E. S. de F. .; MOREIRA, K. A. .; RIBEIRO, D. S. . Evaluation of the lyophilization process on the stability of pigments produced by Monascus purpureus CCT 3802. Research, Society and Development, [S. l.], v. 11, n. 17, p. e97111738807, 2022. DOI: 10.33448/rsd-v11i17.38807. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38807. Acesso em: 22 nov. 2024.

Issue

Section

Agrarian and Biological Sciences