Risk mapping of mass movements in Mãe Luíza – Aparecida sector, Natal/RN

Authors

DOI:

https://doi.org/10.33448/rsd-v12i3.39081

Keywords:

Risk analysis; Mass movement; Dune; Containment structure.

Abstract

The occupation of slopes is quite recurrent in several Brazilian regions. For the most part, this occupation takes place irregularly, without adequate planning. In this way, the natural characteristics of the area, together with anthropic actions inappropriate to the use and occupation of the land, end up causing mass movements, which can seriously affect the local community. In Natal, Rio Grande do Norte, this reality is also verified, as is the case in the Mãe Luíza neighborhood. Faced with this scenario, the objective of this study was to carry out a risk mapping of mass movements in an area belonging to the Mãe Luíza neighborhood, between Rua Camaragibe and Rua Atalaia. The risk mapping of the area under study was carried out based on the methodology proposed by Brasil (2007). Four risk classes were defined, these being low, medium, high and very high risk. Three critical areas were analyzed, with thirty-four properties involved. Among these, only six were classified as having medium mass movement risk, twenty-four properties were classified as high risk and four properties classified as very high risk. The high degree of risk attributed to most properties is mainly due to the precariousness of the existing containment structures in the area under study, associated with irregular constructions, among other factors. Thus, it is evident the need for corrective measures of the situations found to guarantee the habitability of the inspected properties, in addition to public policies to control the occupation of risk areas.

References

Brasil. (2007). Mapeamento de Riscos em Encostas e Margem de Rios / Celso Santos Carvalho, Eduardo Soares de Macedo e Agostinho Tadashi Ogura, organizadores – Brasília: Ministério das Cidades; Instituto de Pesquisas Tecnológicas – IPT

Cogan, J. et. al. (2018). Rainfall-induced shallow landslides caused by ex-Tropical Cyclone Debbie, 31st March 2017. Landslides, 15(6), 1215-1221, 27 mar. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-018-0982-4.

DanG, K et al. (2018). Recent rainfall-induced rapid and long-traveling landslide on 17 May 2016 in Aranayaka, Kagelle District, Sri Lanka. Landslides, 16(1), 155-164. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-018-1089-7.

Fontoura, T. B. (2015). Comportamento tensão-deformação e resistência ao cisalhamento de uma areia de duna cimentada artificialmente. Natal: Universidade Federal do Rio Grande do Norte.

ISDR. (2009). Terminology Disaster Risk Reduction, 35 p. Genebra: Nações Unidas.

Macedo, Y. M. (2015). Vulnerabilidade Socioambiental no Bairro Mãe Luíza, Natal-RN/Brasil. 175 f. Natal: Universidade Federal do Rio Grande do Norte.

Martha, T. R. et al. (2016) Spatial characteristics of landslides triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal. Landslides, 14(2), 697-704. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-016-0763-x.

NATAL. (2008). plano municipal de redução de risco do município de Natal. Secretaria Municipal de Meio Ambiente e Urbanismo.

NATAL. (2017). Conheça melhor seu bairro: região administrativa leste. Natal: Secretaria Municipal de Meio Ambiente e Urbanismo.

Santos O. F., Amaral R. F., Jesus A. P., & Macêdo C. M. H. (1998). Mapeamento de Áreas de Risco de Movimentos de Massas em Encostas Formadas por Dunas na Cidade de Natal. ABMS, Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, 11, Brasília, Anais, 1: 521.

Tominaga, L. K. et. al, (2009) Desastres Naturais: Conhecer para prevenir. Instituto Geológico.

Wang, Y. et al (2017). Mechanism of the catastrophic June 2017 landslide at Xinmo Village, Songping River, Sichuan Province, China. Landslides, 15(2), 333-345, 28. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-017-0927-3.

Xu, Q.; & Zhang, L. (2010) The mechanism of a railway landslide caused by rainfall. Landslides, 7(2), 149-156, 17. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-010-0195-y.

Xu, C. et al. (2017) Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides, 15(3), 551-564. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-017-0929-1.

Yamagishi, H.; & Yamazaki, F. (2018) Landslides by the 2018 Hokkaido Iburi-Tobu Earthquake on September 6. Landslides, 15(12), 2521-2524. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-018-1092-z.

Zhang, Y. et al. (2018) Wangjiawan landslide in Ningxiang County, China. Landslides, 15(8), 1657-1662. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-018-1025-x

Zhu, L. et al. (2019) Characteristics and failure mechanism of the 2018 Yanyuan landslide in Sichuan, China. Landslides, 16(12), 2433-2444, 24 ago. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10346-019-01262-z.

Published

01/03/2023

How to Cite

SILVA, A. R. da .; SANTOS JUNIOR, O. F. dos .; CHAVES, L. F. M. .; OLIVEIRA, R. M. P. de . Risk mapping of mass movements in Mãe Luíza – Aparecida sector, Natal/RN. Research, Society and Development, [S. l.], v. 12, n. 3, p. e12812339081, 2023. DOI: 10.33448/rsd-v12i3.39081. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39081. Acesso em: 13 sep. 2024.

Issue

Section

Engineerings