Mandibular morphological analysis of rats with osteoporosis and periradicular lesions
DOI:
https://doi.org/10.33448/rsd-v11i17.39095Keywords:
Morphology; Periapical periodontitis; Postmenopausal osteoporosis.Abstract
The aim of the study was to perform a morphological analysis of the effects of osteoporosis on the periodontal ligament of rats with periradicular injury. Adult rats (n = 24), of the Wistar lineage, 3 months old, were included in the study. Twelve animals were ovariectomized (group OVX) and 12 were operated by simulation (group C). One hundred and twenty days after surgery, all animals were anesthetized, and in each animal, periradicular lesion was developed in the mandibular left first molar, by making a coronal opening in the mesial fossa on the occlusal surface until the pulp was exposed. At the end of each experimental time interval (21 and 40 days after the lesion developed), the animals were sacrificed, and blood was collected to confirm the effects of castration by serum estrogen measurement. The jaws were removed and prepared for quantitative analysis of the periodontal ligament thickness, by using an optical microscope. Comparative analysis of the data was performed using the non-parametric Kruskal-Wallis and Dunn Multiple Comparison tests. A reduction in serum estrogen levels was observed in the OVX groups (p <0.01), and a significant increase in the periodontal ligament thickness in Group C 21, when compared with Group OVX 40 days (p <0.01), and Group C 40 compared with Group OVX 40 days (p<0.01). In all samples with osteoporosis, there were signs of resorption in the alveolar bone, and significant periodontal ligament thickening in animals with longer exposure to the disease.
References
Armada, L., Nogueira, C.R.R., Neves, U.L., Souza, P. S., Detogne, J.P., Armada-Dias, L., Moreira, R. M., & Nascimento-Saba, C. C. A. (2006). Mandibleanalysis in sex steroid‐deficientrats. Oral diseases, 12(2),181-186. 10.1111/j.16010825.2005.01184.x
Boyle, W.J., Simonet, W.S., Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423 (6937),337-342.
1038/nature01658
Brasil, S.C., Santos, R.M.M., Fernandes, A., Alves, F. R. F, Pires, F. R., Siqueira Jr, J.F., & Armada, L. (2017). Influence of oestrogen deficiency on the development of apical periodontitis. International endodontic journal, 50(2),161-166.
1111/iej.12612
Faisal-Cury, A., & Zacchello, K. P. (2007). Osteoporose: prevalência e fatores de risco em mulheres de clínica privada maiores de 49 anos de idade. Acta Ortopédica Brasileira. 15(3),146-150. doi.org/10.1590/S1413-78522007000300005
Fitts, J.M., Klein, R.M., & Powers, C. A. (2004). Comparison of tamoxifen and testosterone propionate in male rats: differential prevention of orchidectomy effects on sex organs, bone mass, growth, and the growth hormone—IGF‐I axis. Journal of andrology. 25(4), 523-534. 10.1002/j.1939-4640.2004.tb02823.x
Friedman, S. (2008). Expected outcome in the prevention and treatment of apical periodontitis.In:Ostarvik D, Pitt Ford T (eds) essencial Endodontology. Oxford, UK: Blackwell Munksgaard Ltd, 408-469.
Gomes-filho, J.E., Wayama, T., Dornelles, R.C.M., Ervolino, E., Coclete, G.A., Duarte, P.C.T., Yamanri,G. H., Lodi, C. S., Dezan-Júnior, E., & Cintra, L.T.A. (2015). Effect of raloxifene on periapical lesions in ovariectomized rats. Journal of endodontics, 41(5), 671-675. 10.1016/j.joen.2014.11.027
Guan, X., Guan, Y., Shi, C., Zhu, X., He, Y., Wei, Z., Yang, J., & Hou, T. (2020). Estrogen deficiency aggravates apical periodontitis by regulating NLRP3/caspase-1/IL-1β axis. American journal of translational research,12(2), 660.
Horan, A., & Timmins, F. (2009). The role of community multidisciplinary teams in osteoporosis treatment and prevention. Journal of Orthopaetic Nursing, 13, 85-96.
Klibanski, A., Adams-Campbell, L., Bassford, T. L., & Blair, N. S. (2001). Osteoporosis prevention, diagnosis, and therapy. Journal of the American Medical Association, 285(6), 785-795. 10.1001/jama.285.6.785
Lopez-Lopez, J., Castellanos-Cosano, L., Estrugo-Devesa, A., Gomez-Vaquero, C., Velasco-Ortega, E., & Segura-Egea, J.J. (2015). Radiolucent periapical lesions and bone mineral density in post-menopausal women. Gerodontology. 32,195–201.
1111/ger.12076
Marcondes, F.K., Bianchi, F.J., & Tanno, A.P. (2002). Determination of the estrous cycle phases of rats: some helpful considerations. Brazilian journal of biology, 62(4A),609-614. 10.1590/s1519-69842002000400008
Olivera, M.I., Bozzini, C., Meta, I.F., Bozzini, C. E., Alipi, R. M. (2003). The development of bone mass and bone strength in the mandible of the female rat. Growth, development, and aging, 67(2),85-93.
Oseko, F., Yamamoto, T., Akamatsu, Y, Kanamura, N., Iwakura, Y., Imanishi, J., Kita, M. (2009). IL‐17 is involved in bone resorption in mouse periapical lesions. Microbiology and immunology, 53(5), 287-294. 10.1111/j.1348-0421.2009.00123.x
Qian, H., Guan, X., & Bian, Z. F.S.H. (2016). Aggravates bone loss in ovariectomised rats with experimental periapical periodontitis. Molecular medicine reports, 14(4),2997-3006. 10.3892/mmr.2016.5613
Qian H, Jia J, Yang Y, & Bian Z, Ji Y. (2020). Follicle-Stimulating Hormone Exacerbates the Progression of Periapical Inflammation Through Modulating the Cytokine Release in Periodontal Tissue. Inflammation, 43,1572–1585.
1007/s10753-020-01234-9
Romualdo, P.C., Lucisano, M., Paula-Silva, F.W.G., Leoni, G.B., Sousa-Neto, M.D., Silva, R.A.B., Silva, L. A.B., & Nelson-Filho, P. (2018). Ovariectomy exacerbates apical periodontitis in rats with an increase in expression of proinflammatory cytokines and matrix metalloproteinases. Journal of Endodontics, 44(5),780-785. 10.1016/j.joen.2018.01.010
Siqueira, J.F., & Lopes, H. P. (2011). Treatment of endodontic infections. London, Quintessence.
Yamashiro, T., & Takano-Yamamoto, T. (2001) Influences of ovariectomy on experimental tooth movement in the rat. Journal of dental research, 80(9),1858-1861. 10.1177/00220345010800091701
Yao G.-Q., Itokawa, T., Paliwal, I., & Insogna, K. (2005). CSF-1 induces fos gene transcription and activates the transcription factor Elk-1 in mature osteoclasts. Calcified tissue international, 76(5),371-378. 10.1007/s00223-004-0099-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 samantha roberto cordeiro; Luciana Armada; Rachel Moreira Morais Santos; Juliana de Noronha Santos Netto; Marcia de Deus Santos; Warley Oliveira Silva; Sabrina Castro Brasil
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.