Use of Trichoderma in promoting the growth of forest seedlings
DOI:
https://doi.org/10.33448/rsd-v12i1.39138Keywords:
Shizolobium amazonicum; Entererolobium maximun; Apuleia leiocarpa; Fungi.Abstract
The use of forest species is common for various purposes such as the production of furniture, watercraft, and by-products such as charcoal. Microorganisms are viable alternatives to increase the efficiency of seedling production of these species. The objective of the present work was to evaluate the efficiency of Trichoderma inoculants as a plant growth promoter in the species of Paricá (Shizolobium amazonicum), Fava-tamboril (Entererolobium maximun) and Amarelão (Apuleia leiocarpa). Two Trichoderma isolates were used: UFT-57 (Trichoderma virens) and UFT-21 (T. asperelloides). The isolates were picked in a petri dish with PDA medium (potato, dextrose and agar) and incubated in a B.O.D. chamber, at 27 °C ± 2 °C, for 12 hours with light, for seven days. At planting, the suspension with Trichoderma was placed with the aid of a graduated pipette, 1 mL was added in each tube, with the sowing of three seeds and later leaving one plant per tube. Plant height, stem diameter, root volume, shoot dry mass, root dry mass and Dickison's quality index were evaluated. The T. asperelloides and T. virens isolates have a positive performance in the production of Paricá, Fava-tamboril and Amarelão seedlings, evidenced by the increase in biomass both in the root system and in the aerial part.
References
Almeida, D. H., Scaliante, R. M., Macedo, L. B., Macedo, A. N., Dias, A. A., Christoforo, A. L., & Junior, C. C. (2013). Caracterização completa da madeira da espécie amazônica Paricá (Schizolobium amazonicum HERB) em peças de dimensões estruturais. Revista Árvore, 37, 1175-1181. https://doi.org/10.1590/S0100-67622013000600019.
Amador, A. M. L., Chaves, L. H. G., & Guerra, H. O. C. (2007). Desenvolvimento de mudas de cássia e tamboril em diferentes composições de substratos. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 2, 78-84.
Amaral, P. P., Steffen, G. P. K., Maldaner, J., Missio, E. L., & Saldanha. C. W. (2017). Promotores de crescimento na propagação de caroba. Pesquisa Florestal Brasileira, 37, 149-157. https://doi.org/10.4336/2017.pfb.37.90.1402.
Angélico, T. S., Marcati, C. R., Rossi, S., Silva, M. R., & Sonsin-Oliveira, J. (2021). Soil effects on stem growth and wood anatomy of tamboril are mediated by tree age. Forests, 12, 1058. https://doi.org/10.3390/f12081058.
Azevedo, G. B., Novaes, Q., Azevedo, G. T. Silva, H. F., Sobrinho, G. G. R., & Novais, A. (2017). Efeito de Trichoderma spp. no crescimento de mudas clonais de Eucalyptus camaldulensis. Scientia Forestalis, 45, 343-352. https://doi.org/10.18671/SCIFOR.V45N114.10.
Guimarães, B. P., Neves, L. E. P., Guimarães, M. G., & Ghesti, G. F. (2020). Evaluation of maturation congeners in beer aged with Brazilian woods. Journal of Brewing and Distilling, 9, 1-7. https://doi.org/10.5897/JBD2019.0053.
Chagas, L. F. B., Chagas Junior, A. F., Carvalho, M. R. C., Miller, L. O., & Colonia, B. S. O. (2015). Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. Journal Soil Science and Plant Nutrition, 15, 794-804. https://doi.org/10.4067/S0718-95162015005000054.
Chagas, L. F. B., Chagas Junior, A. F., Soares, L. P., & Fidelis, R. R. (2017). Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4, 97-102. https://doi.org/10.32404/rean.v4i3.1529.
Chagas Junior, A. F., Chagas, L. F. B., Miller, L. O. & Oliveira, J. C. (2019a). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, 14, 263-271. https://doi.org/10.5897/AJAR2018.13556.
Chagas Junior, A. F., Chagas, L. F. B., Colonia, B. S. O., Miller, L. O. & Oliveria, J. C. (2019b). Trichoderma asperellum (UFT201) functions as a growth promoter for soybean plant. African Journal of Agricultural Research, 14, 1772-1777. https://doi.org/10.5897/AJAR2019.13985.
Chagas, A. F., Gomes, F. L., Martins, A. L. L., Oliveira, R. S., Marcos, G., & Chagas, L. F. B. (2021). Trichoderma como promotor de crescimento de mudas de eucaliptos. Journal of Biotechnology and Biodiversity, 9, 060-072, 2021. https://doi.org/10.20873/jbb.uft.cemaf.v9n1.chagasjunior.
Dickson A, Leaf AL, Hosner JF. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron., v. 36, p. 10-13, 1960.
Griebeler, A. M., Araújo, M. M., Tabaldi, L. A., Steffen, G. P. K., Turchetto, F., Rarato, D. G., Barbosa, F. M., Berghetti, A. L. P., Nhamtumbo, L. S., & Lima, M. S. (2021). Type of container and Trichoderma spp. inoculation enhance the performance of tree species in enrichment planting. Ecological Engineering, 169, 106317. https://doi.org/10.1016/j.ecoleng.2021.106317.
Gupta, K. J., Mur, L. A. J., & Brotman, Y. (2014). Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Molecular Plant-Microbe Interactions, 27, 307-314. https://doi.org/10.1094/MPMI-06-13-0160-R.
Hoyos-Carvajal, L., Orduz, S., & Bissett, J. (2009). Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology, 46, 615-631. https://doi.org/10.1016/j.fgb.2009.04.006.
Junges, E., Muniz, M. F., Mezzomo, R., Bastos, B., & Machado, R. T. (2016). Trichoderma spp. na produção de mudas de espécies florestais. Floresta e Ambiente, 23, 237-244. https://doi.org/10.1590/2179-8087.107614.
Lucon, C. M. M. (2017). InfoBibos. Promoção de crescimento de plantas com o uso de Trichoderma spp. [internet] [acesso em 20 set 2017]. Disponível em: http://www.infobibos.com/Artigos/2009_1/trichoderma/index.htm.
Melo, L. A., Abreu, A. H. M., Leles, P. S. S., Oliveira, R. R., & Silva, D. T. (2018). Qualidade e crescimento inicial de mudas de Mimosa caesalpiniifolia Benth. produzidas em diferentes volumes de recipientes. Ciência Florestal, 28, 47-55. https://doi.org/10.5902/1980509831574.
Nicolás, C., Hermosa, R., Rubio, B., Mukherjee, P. K., & Monte, E. (2014). Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science, 228, 71-78. https://doi.org/10.1016/j.plantsci.2014.03.005.
Peel, M. C., Finlayson, B. L., & McMahon, A. (2007). Update world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science, 11, 1633-1644. https://doi.org/10.5194/hess-11-1633-2007.
Pereira, L. T., Andrade, K. S. P., Nunes, S. E. A., Belfort, M. G. S., Oliveira, F. S., & Nascimento, I. O. (2020). Efeitos de rizobactérias na promoção de crescimento e controle de fitopatógenos em sementes de paricá. Revista Ibero-Americana de Ciências Ambientais, 11, 539-548. https://doi.org/10.6008/CBPC2179-6858.2020.005.0049.
Samuels, G. J., Ismaiel, A., Bon, M., Respinis, S., & Petrini, O. (2010). Trichoderma asperellum sensulato consists of two cryptic species. Mycologia, 10, 944-966. https://doi.org/10.3852/09-243.
Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43. doi:10.1146/annurev-phyto-073009-114450.
Silva, D. A., Almeida, V. C., Viana, L. C., Klock, U., & Muñiz, G. I. B. (2014). Avaliação das propriedades energéticas de resíduos de madeiras tropicais com uso da espectroscopia NIR. Floresta e Ambiente, 21, 561-568. https://doi.org/10.1590/2179-8087.043414.
Soriano, J., Veiga, N. S., & Martins, I. Z. (2015). Wood density estimation using the sclerometric method. European Journal of Wood and Wood Products, 73, 753-758. https://doi.org/10.1007/s00107-015-0948-3.
Stefanini M. B., Rodrigues, S. D., & Ming, L. C. Ação de fitorreguladores no crescimento da erva-cidreira-brasileira. Horticultura Brasileira, 20, 18-23. https://doi.org/10.1590/S0102-05362002000100003.
Taiz, L., & Zeiger, E. (2009). Fisiologia vegetal. Porto Alegre: Artmed, 819p.
Zhao, L., & Zhang, Y. (2015). Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. Journal of Integrative Agriculture, 14, 1-15. https://doi.org/10.1016/S2095-3119(14)60966-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ana Paula Monteiro da Silva Ribeiro Ribeiro; Celso Afonso Lima; Milena Barreira Lopes; Dalilla Moreira de Oliveira Moura; Ana Licia Leão Ferreira; Albert Lennon Lima Martins; Lillian França Borges Chagas; Aloisio Freitas Chagas Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.