Development of prune jelly containing Bacillus clausii

Authors

DOI:

https://doi.org/10.33448/rsd-v12i1.39143

Keywords:

Probiotic bacilli; Prune; Jelly; Gastrointestinal resistance.

Abstract

Probiotic dairy products are widely consumed, but in view of the growing number of vegan and lactose-intolerant individuals, the elaboration of probiotic foods of plant origin is an option. Thus, the objective was to develop prune jelly containing Bacillus clausii and to evaluate the physical-chemical, microbiological characteristics and the resistance of the probiotic to in vitro digestion. Prune jellies containing 108 spores/g of B. clausii and control jellies were prepared and stored at 8°C for 45 days. Physical-chemical analyzes of pH, acidity, aw, phenolic compounds and color and microbiological analyzes of the viability of B. clausii in the product, Salmonella spp., filamentous fungi and yeasts, Enterobacteriaceae, in addition to the in vitro test of survival of the microorganism to digestion by gastrointestinal tract were performed. The presence of bacteria in the product did not interfere with its physicochemical characteristics. B. clausii showed a viability of 7.64 Log CFU/g at the beginning and end of the shelf life of the jellies, with no significant variation between the times studied. The product was suitable for consumption, with microbiological quality within the standards of the legislation. At the end of the in vitro digestion test, at time 0, B. clausii presented an average count of 7.57 Log CFU/g and at 45 days 7.30 Log CFU/g, with a survival rate at both times > 95 %. The prune jelly was an excellent matrix to carry B. clausii, which showed an excellent survival rate in the product, which can be considered a potentially probiotic food.

References

Ahire, J. J., Kashikar, M. S., & Madempudi, R. S. (2020). Survival and Germination of Bacillus clausii UBBC07 Spores in in vitro Human Gastrointestinal Tract Simulation Model and Evaluation of Clausin Production. Frontiers in Microbiology, 11 (1010).

Alves-Santos, A. M., Sugizaki, C. S. A., Lima, G. C., & Naves, M. M. V. (2020). Prebiotic effect of dietary polyphenols: A systematic review. Journal of Functional Foods, 74, (104169).

Andrews, W. H., Flower, R. S., Silliker, J., & Bailey, J. S. (2001). Salmonella. In: Downes, F. P & Ito, K. (ed.). Compendium of Methods for the Microbilological Examination of Foods. (4a. ed.): American Public Health Association – APHA, p.357-380.

Arepally, D., & Goswami, T. K. (2019). Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT-Food Science and Technology, 99:583-593.

Baenas, N., Nunez-Gómez, V., Navarro-González, I., Sanchez-Martínez, L., García-Alonso, J., Periago, M. J., & González-Barrio, R. (2020). Raspberry dietary fibre: Chemical properties, functional evaluation and prebiotic in vitro effect. LWT – Food Science and Technology, 134 (110140).

Bedani, R., Rossi, E. A., & Saad, S. M. I. (2013). Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiology, 34:382-389.

Bellis, P., Sisto, A., & Lavermicocca, P. (2021). Probiotic bacteria and plant-based matrices: An association with improved health-promoting features. Journal of Functional Foods, 87 (104821).

Brasil, Agência Nacional de Vigilância Sanitária (ANVISA) (2018). Resolução da Diretoria Colegiada - RDC nº 241, de 26 de julho De 2018: Dispõe sobre os requisitos para comprovação da segurança e dos benefícios à saúde dos probióticos para uso em alimentos. Diário Oficial da União, Poder Executivo. Brasília-DF.

Brasil, Agência Nacional de Vigilância Sanitária (ANVISA) (2019a). Resolução RDC n° 331, de 23 de dezembro de 2019: Dispõe sobre os padrões microbiológicos de alimentos e sua aplicação. Diário Oficial da União, Poder Executivo. Brasília-DF.

Brasil, Agência Nacional de Vigilância Sanitária (ANVISA) (2019b). Instrução Normativa n° 60, de 23 de dezembro de 2019: Estabelece as listas de padrões microbiológicos para alimentos. Diário Oficial da União, Poder Executivo. Brasília-DF.

Clark, D. H. (2016). Fruits and Fruit Products. In: Latimer Jr., G. W. (ed.). Official Methods of Analysis of the Association of Official Analytical Chemists International. 20. ed. Rockville, USA: AOAC International, ch. 37, p. 1-39.

Dajani, A. I., Nounou, M. A., Fayadh, M. H., Sabih, S. A., Kassim, L., & Abu, H. A. A. (2017). Modified Sequential Regimen of Helicobacter pylori Treatment Enforced by Bacillus clausii and Zinc Carnosine Complex Yields High Eradication Rates. Advanced Research in Gastroenterology & Hepatology, 5(3).

Dar, H. Y., Pal, S., Shukla, P., Mishra, P. K., & Tomar, G. B., Chattopadhyay, N., & Srivastava, R. K. (2018). Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice. Nutrition, 54:118-128.

Durán, J. C. G. (2015). Prevención de la Diverticulitis Aguda Recurrente con Bacillus claussi. Revista Gen, 69(1):2-6.

Ellis, C. (2016). Vegetable Products, Processed. In: Jatimer Jr., G. W. (ed.). Official Methods of Analysis of the Association of Official Analytical Chemists international. (20a. ed.): AOAC International. Chapter 42, p. 1-14.

Ergun, R., Lietha, R., & Hartel, R. W. (2010). Moisture and Shelf Life in Sugar Confections. Critical Reviews in Food Science and Nutrition, 50(2):162-192.

European Food Safety Authority (EFSA) (2012). Scientific Opinion on the substantiation of health claims related to dried plums of ‘prune’ cultivars (Prunus domestica L.) and maintenance of normal bowel function (ID 1164, further assessment) pursuant to Article 13 (1) of Regulation (EC) No 1924/20061. European Food Safety Authority Journal, 10(6).

Food And Agricultive Organization Of United Nations (FAO), & World Health Organization (WHO) (2001/2022). Evaluation of Health and Lactic Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation, Córdoba, Argentina.

Fioravanti, M. I. A., & Morgano, M. A. (2021). Uma abordagem dos ensaios in vitro para estimar a absorção dos minerais em fórmulas infantis. Brazilian Journal of Food Technology, Campinas, 24(2020098).

Ghelardi, E., Celandroni, F., Salvetti, S., Gueye, S. A., Lupetti, A., & Senesi, S. (2015). Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. Journal of Applied Microbiology, 119:552-559.

Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., & Kader, A. A. (2002). Antioxidant Capacities, Phenolic Compounds, Carotenoids, and Vitamin C Contents of Nectarine, Peach, and Plum Cultivars from California. Journal of Agricultural and Food Chemistry, 50:4976−4982.

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatologyl, 11:506–514.

Ianiro, G., Rizzatti, G., Plomer, M., Lopetuso, L., Scaldaferri, F., Franceschi, F., Cammarota, G., & Gasbarrini, A. (2018). Bacillus clausii for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 10(1074).

Kim, D. O., & Padilla-Zakour, O. I. (2004). Jam Processing Effect on Phenolics and Antioxidant Capacity in Anthocyanin-rich Fruits: Cherry, Plum, and Raspberry. Journal Of Food Science, 69(9).

Lakshmi, S. G., Jayanthi, N., Saravanan, M., & Ratna, M. S. (2017). Safety assesment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicology Reports, 4:62–71.

Lillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. LWT- Food Science and Technology, 151(112106).

Logan, N. A., & De Vos, P. (2009). Genus I. Bacillus Cohn 1872. In: De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K. H., & Whitman, W. B. (ed.). Bergey’s Manual Of Systematic Bacteriology. 2. ed. Nova Iorque: Springer. v. 3, The firmicutes. p. 97.

Marcial-Coba, M. S., Pjaca, A. S., Andersen, C. J., Knøchel, S., & Nielsen, D. S. (2019). Dried date paste as carrier of the proposed probiotic Bacillus coagulans BC4 and viability assessment during storage and simulated gastric passage. LWT - Food Science and Technology, 99:197-201.

Martins, E. M. F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., Pinto, C. L. O., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51:764–770.

Martins, E. M. F., Ramos, A. M., Martins, M. L., & Rodrigues, M. Z. (2015). Research and Development of Probiotic Products from Vegetable Bases: A New Alternative for Consuming Functional Food. In: Rai, V. R., & Bai, J. A. (ed.). Beneficial Microbes in Fermented and Functional Foods. Boca Raton: CRC press, cap. 11, p. 207-222.

Martins, E. M. F., Benevenuto, W. C. A. N., Martins, A. D. O., Benevenuto Júnior, A. A., Queiroz, I. C., Dias, T. M. C., Souza, D. A. F., Paula, D. A., & Martins, M. L. (2022). New and trends in the development of functional foods: Probiotic dairy and non-dairy products. In: Gopi, S., & Balakrishnan, P. (ed.). Advances in Nutraceuticals and Functional Foods. Boca Raton: CRC press, 2022, cap. 8, p. 199-237.

Ministério Da Educação – Secretaria De Educação Profissional E Tecnológica. (2007). Doces e Geleias. Cartilhas Temáticas. Brasília. http://portal.mec.gov.br/setec/arquivos/pdf3/publica_setec_doces_geleias.pdf.

Miranda, J. S., Costa, B. V., Oliveira, I. V., Lima, D. C. N., Martins, E. M. F., Leite Júnior, B. R. C., Benevenuto, W. C. A. N., Queiroz, I. C., Silva, R. R., & Martins, M. L. (2020). Probiotic jelly candies enriched with native Atlantic Forest fruits and Bacillus coagulans GBI-30 6086. LWT - Food Science and Technology, 126(109275).

Pereira, D. C. S. (2015). Características físico-químicas, microbiológicas, colorimétricas e compostos bioativos de frutos da juçara armazenados em diferentes temperaturas. 2015. 107f. Dissertação (Mestrado Profissional em Ciência e Tecnologia de Alimentos) – Instituto Federal do Sudeste de Minas Gerais – Campus Rio Pomba, Rio Pomba.

Randazzo, C. L., Pitino, I., Licciardello, F., Muratore, G., & Caggia, C. (2013). Survival of Lactobacillus rhamnosus probiotic strains in peach jam during storage at different temperatures. Food Science and Technology, 33(4):652-659.

Shori, A. B. (2016). Influence of food matrix on the viability of probiotic bactéria: A review based on dairy and non-dairy beverages. Food Bioscience, 13:1–8.

Silva, N., Junqueira, V. C. A., Silveira, N. F. A., Taniwaki, M. H., Gomes, R. A. R., & Okazaki, M. M. (2017). Manual de métodos de análise microbiológica de alimentos e água. (5ª. Ed): Bluncher.

Silva, M. M., Lemos, T. O., Rodrigues, M. C. P., Araújo, A. M. S., Gomes, A. M. M., Pereira, A. L. F., & Andrade, D. S. (2021). Sweet-and-sour sauce of assai and unconventional food plants with functional properties: An innovation in fruit sauces. International Journal of Gastronomy and Food Science, 25:100372.

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299:152−178.

Soares, M. B., Martinez, R. C. R., Pereira, E. P. R., Balthazar, C. F., Cruz, A. G. C., Ranadheera, S., & Sant'ana, A. S. (2019). The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Research International, 125(108542).

Soto-Caballero, M. C., Acosta-Muñiz, C. H., Chávez-Leal, V., González-Aguilar, G., Soria-Hernández, C. G., & Avila-Quezada, G. D. (2021). Enrichment of sliced apple fruit with Bacillus coagulans. Emirates Journal of Food and Agriculture, 33(1):12-19.

Stacewicz-Sapuntzakis, M., Bowen, P. E., Hussain, E. A., Damayanti-Wood, B. I., & Farnsworth, N. R. (2001). Chemical Composition and Potential Health Effects of Prunes: A Functional Food? Critical Reviews in Food Science and Nutrition, 41(4):251–286.

Szlufman, C., & Shemesh, M. (2021). Role of Probiotic Bacilli in Developing Synbiotic Food: Challenges and Opportunities. Frontiers in Microbiology, 12(638830).

Tangyu, M., Muller, J., Bolten, C. J., & Wittmann, C. (2019). Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Applied Microbiology and Biotechnology, 103:9263-9275.

Vivek, K., Mishra, S., & Pradhan, R. C. (2017). Physicochemical characterization and mass modelling of Sohiong (Prunus nepalensis L.) fruit. Journal of Food Measurement and Characterization, 12(2):923-936.

Walkowiak-Tomczak, D. (2008). Characteristics of plums as a raw material with valuable nutritive and dietary properties – a review. Polish Journal Of Food And Nutrition Sciences, 58(4):401-405.

World Health Organization (WHO). (2003). Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. Geneva: WHO. https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf; jsessionid=9944838929D2A7BBD0CE612382341760?sequence=1.

Published

01/01/2023

How to Cite

DIAS, T. de M. C. .; CAMPOS , R. C. de A. B. .; MARTINS, M. L. .; QUEIROZ , I. C. de; MARTINS , F. de O. .; LIMA, D. C. N. de .; SILVA, R. R. da .; MARTINS, E. M. F. . Development of prune jelly containing Bacillus clausii. Research, Society and Development, [S. l.], v. 12, n. 1, p. e5412139143, 2023. DOI: 10.33448/rsd-v12i1.39143. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39143. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences