Bioprospecting of fungi isolated from the gut of Amazonian of the order Coleoptera with anti-candida sp activity.

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.39517

Keywords:

Microbiological; Fungi; Bioprospection; Amazon.

Abstract

With an unbridled exploitation of natural resources, much of the world's biodiversity has been decreasing over the years. With all the Amazonian wealth, Brazil is given the advantage in the search for national development, through the proper exploitation of these resources, minimizing damage to the environment. In this sense, Bioprospection emerges as a tool for Sustainable Development, which can be understood as the systematic search for organisms, genes, enzymes, compounds, processes and parts from living beings, which have economic potential and eventually lead to the development of a product. Many fungi live in symbiotic or commensal associations in beetle intestines and these fungi have an as yet unknown ability to produce as yet unknown substances. In view of these relationships, this research aims to carry out a Bioprospection of filamentous fungi extracted from the gut of Amazon beetles. The results are promising when highlighting the antifungal activity against strains of Candida sp species whit the studied extract fractions from Fusarium Incarnatum – equisetti species.

References

Afonso S. et al. (2009). Influência do solvente extrator no processo de extração de metabólitos secundários da Rollinia mucosa (Jacq.) Baill pelos parâmetros de Snyder. 49º Congresso Brasileiro de Química.

Balmford, A. et al. (2002). Economic Reasons for Conserving Wild Nature. Science, 297, 950-953.

Boucher, S. (2005). Évolution et phylogénie des Coleóptéres Passalidae (Scarabaeoidea) Les taxons du groupe famille. In: La tribu néotr6ulbopicale des Proculini et son complexe Veturius. Annales de la Société Entomologique de France (N. S.) 41(3/4), 239-604.

Brown, G. D. et al. (2012). Hidden Killers: Human Fungal Infections. Sci. Transl. Med., 4, 165rv13.

Celestino J. R. et al (2014). Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochemistry. Science Direct.

-575.

Constanza, R. et al. (1997). The value of the world´s ecosystem services and natural capital. Nature, 387, 253-260.

Denning, D. W., & Hope, W. W. (2010). Therapy for fungal diseases: opportunities and priorities. Trends in Microbiology, 18, 195-204.

Demir, E., Basbülbül G. (2017). Screening of Bacteriocin Production in Lactic Acid Bacteria Isolated From Fermented Dairy Products. Biotechnology Journal, India, 18(2), 1-9. http://portal.anvisa.gov.br/fitoterapicos.

Enoch, D. A. et al. (2006). Invasive fungal infections: a review of epidemiology and management options. Journal of Medical Microbiology, 55, 809–818.

Facchini I., Pasquini C. (1997). Extração líquido-líquido em sistemas de fluxo. Universidade Estadual de Campinas. Química Nova p21(1)

Fang-Zhou L. et al. (2020) Bioprospecção de um novo endofítico Bacillus velezensis FZ06 das folhas de Camellia assamica: Produção de três grupos de lipopeptídeos e a inibição de microrganismos que deterioram alimentos. Journal of Biotechnology. Elsevier. [42-53].

Ferreira M. G. R. (2006). Aspectos Sociais da fitoterapia. Portal Embrapa, ISSN: 0103-9865.

Fonseca, C.R.V., et. al. (2011). A hypothetical evolutionary history of passalid beetles narrated by the comparative anatomy of the hindgut (Coleoptera: Passalidae). Zootaxa, 3012(1), 1–20.

Fuentefria, A. M. et al. (2017). Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett. Appl. Microbiol., 66, 2-13.

Garber, G. (2001). An Overview of Fungal Infections. Drugs, 61, 1-12.

Júnior N. L. S. (2011). Desafios da Bioprospecção no Brasil. Ipea, Brasília.

Lavika J., Deepti (2017). Avaliação do desempenho de celulases fúngicas com bagaço de cana pré-tratado com ácido diluído: Uma estratégia robusta de bioprospecção para enzimas de biocombustíveis. Science Direct. 115, 978-988.

Lelej, A. S., & Storozhenko, S. Y. (2010). Insect taxonomic diversity in the Russian far east. Entomological Review, 90(2), 372–386.

Matias E. D., & Pimentel N. C. (2005). Biotecnologia: um desafio para o Amazonas.

Mavor, A. L. et al. (2005). Systemic Fungal Infections Caused by Candida Species: Epidemiology, Infection Process and Virulence Attributes. Curr. Drug Targets, 6, 863-874.

Miceli, M. H. et al. (2011). Emerging opportunistic yeast infections. Lancet Infect. Dis., 11, 142–51.

Milano, H. S. (2012). Identificação de microrganismos do trato digestivo de pragas de cana-de-açúcar com atividade enzimática para degradação de substratos lignocelulósicos e potencial para bioconversão de D-xilose em xilitol. Master's Dissertation, Centro de Energia Nuclear na Agricultura, University of São Paulo, Piracicaba. doi:10.11606/D.64.2012.tde-25102012-143920. Retrieved 2022-12-19, from www.teses.usp.br

Montefusco E. L. B. (2020) Isolamento e potencial enzimático de fungos associados ao intestino de larvas de Stenochironomus kieffer (insecta: díptera: chironomidae). Brazilian Journal of Development. DOI: 10.34117/bjdv6n5-347

Negreiros M. A. (2020) Avaliação de meios e condições de cultivo de fungos filamentosos amazônicos em um programa de triagem de antimicrobianos. PPGCTRA – UFAM.

Pimentel V. et al. (2015). Biodiversidade Brasileira como fonte de inovação farmacêutica: uma nova esperança? Revista do BNDES, Junho.

Posada L. F. et al. (2016). Bioprospecção de bactérias aeróbias formadoras de endosporos com potencial biotecnológico para promoção do crescimento de bananeiras. Science Direct.

Priyanka A., & Pandey A. (2020). Bioprospecting plant growth promoting endophytic bacteria isolated from Himalayan yew (Taxus wallichiana Zucc.). Instituto Nacional do Meio Ambiente do Himalaia. Microbiological Research. 239. 126536.

Reis C. S. (2017). Fungos associados a besouros da ambrosia, Euplatypus paralellus. Universidade Estadual Paulista, Rio Claro.

Reyes-Castillo, P. (1970). Coleoptera, Passalidae: Morfologia y división en grandes grupos: géneros americanos. Folia Entomológica Mexicana, 20(22), 3– 240.

Saccaro Júnior, Nilo L. (2011). A regulamentação de acesso a recursos genéticos e repartição de benefícios: disputas dentro e fora do Brasil. Instituto de Pesquisa Econômica Aplicada: Brasília. Vol XV. 229-244

Santos R. R. C. (2018). Influência do estresse físico-químico e biológico na produção de pigmentos por Penicilium sclerotiorum LM 5679. Universidade Federal do Amazonas.

Shiela E. U. et al. (2014) Ferramentas de biologia sintética para bioprospecção de produtos naturais em eucariotos. Science Direct.

Silveira, L. M. S., et al. (2009). Metodologias de atividade antimicrobiana aplicadas a extratos de plantas: comparação entre duas técnicas de ágar difusão. Revista Brasileira de Farmácia, Brasil, 90(2), 124- 128.

Singh R. S., & Thakur S. (2014). Antimicrobial activity and carbohydrate specificity of new mycelial lectins from Fusarium sp. Institute of Molecular Biology, Slovak Academy Science.

Souza G. F. L. (2017). Prospecção de leveduras fermentadoras de xilose do intestino de besouros (Insecta: coleóptera) de áreas de floresta amazônica em Itacoatiara-Am. PPGCTRA – UFAM.

Tayung K., & Jha D. K. (2010). Antimicrobial endophytic fungal assemblages inhabiting bark of Taxus baccata L. of Indo-Burma mega biodiversity hotspot. Indian Journal Microbiol.

Ye J. et al. (2006). BLAST: improvements for better sequence analysis. Nucleic Acids Research, Oxford University Press.

Zamberlan J. F. et al. (2014). Produção e manejo agrícola: impactos e desafios para sustentabilidade ambiental. Eng. Sanit. Ambient. Edição especial.

Published

13/01/2023

How to Cite

RUFINO, J. L. da S. .; RODRIGUES, T. K. de S.; ABEGG, M. A. Bioprospecting of fungi isolated from the gut of Amazonian of the order Coleoptera with anti-candida sp activity. Research, Society and Development, [S. l.], v. 12, n. 2, p. e0712239517, 2023. DOI: 10.33448/rsd-v12i2.39517. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39517. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences