Data analysis on domestic violence against the woman

Authors

DOI:

https://doi.org/10.33448/rsd-v12i1.39561

Keywords:

Data analysis; Domestic violence; Predictive analytics; Discovery of knowledge in databases.

Abstract

Femicide is the worst outcome of a police occurrence in cases of domestic violence, as the woman dies after suffering violence one or more times. The databases on domestic violence and femicide in the state of Paraná are made up of many attributes and valuing them for further analysis is a problem that, without the aid of a flow or method, can be a time-consuming and ineffective task. The objective of this study was to build predictive analysis flows that support research with public safety data. This is a research with a quantitative approach, inductive method, at an exploratory level. The analysis of the violence against women databases for the years 2018, 2019 and 2020 was carried out using descriptive statistics combined with the Fayyad model for knowledge discovery through data mining that employed four attribute selection techniques with filter approach and rules induction algorithms PRISM and CN2. The average age is 37 years and the most frequent occupation is linked to domestic service for the victims of both databases, 63% of the women killed by femicide have a history of domestic violence, being more likely that the victim and the perpetrator cohabit and 19% of the victims registered more than one occurrences. The rules generated by the CN2 algorithm with the CFS and Info Gain attribute selection techniques were validated by specialists in criminal analysis.

Author Biographies

Christian Aristóteles da Silva Costa, Universidade Federal do Paraná

Master in Information Management from the Federal University of Paraná (UFPR) in 2022, Bachelor of Accounting from UFPR (2018) and Technologist in Systems Analysis and Development from Centro Universitário OPET (2013). Experience in the area of ​​Analysis and Development of systems for Public Security in the state of Paraná, geocriminal analysis and crime geoprocessing.

Denise Fukumi Tsunoda, Universidade Federal do Paraná

Bachelor's degree in Computer Science from the Federal University of Paraná (1992), Master's
degree in Electrical Engineering and Industrial Informatics from the Federal Technological
University of Paraná (1996) and a PhD in Electrical Engineering and Industrial Informatics -
Biomedical Engineering from the Federal Technological University of Paraná ( 2004). She is
currently a professor at the Federal University of Paraná in the Information Management
course, Department of Science and Information Management. Belongs to the permanent group of
reviewers of Revista Produção Online and Revista GEPROS. Has experience in the area of
​​Biochemistry, with emphasis on Bioinformatics. He works mainly on the following topics:
artificial intelligence, machine learning, pattern discovery in databases, data mining,
evolutionary computing, genetic algorithms and genetic programming.

References

Azevedo, A., & Santos, M. F. (2008). KDD, SEMMA and CRISP-DM: a parallel overview. In A. Abraham (ed.), IADIS European Conference Data Mining, IADIS, 182-185. http://recipp.ipp.pt/handle/10400.22/136%0Ahttp://recipp.ipp.pt/bitstream/10400.22/136/3/KDD-CRISP-SEMMA.pdf

Brasil. (31 de Dezembro de 1940). Decreto-Lei 2.848, de 07 de Dezembro de 1940. Legislação. Brasília, Distrito Federal, Brasil.

Brasil. (7 de Agosto de 2006). Lei nº 11.340, de 7 de Agosto de 2006. Legislação. Brasília, Distrito Federal, Brasil.

Brasil. (9 de Março de 2015). Lei nº 13.104, de 9 de Março de 2015. Legislação. Brasília, Distrito Federal, Brasil.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm machine learning. Machine Learning, [s. l.], 3, 261-283. https://link.springer.com/content/pdf/10.1023/A:1022641700528.pdf

Da Silva Costa, C. A., Tsunoda, D. F., & Pecini, A. C. (2021). Análise de dados de violência doméstica: revisão integrativa. In: XXVI Congresso Nacional de Administração, Goiânia: SINAGO. https://drive.google.com/file/d/1R-y8s_mEP6LrelU9NW2OQq2jnoSWTelL/view

Da Silva, L. A., Peres, S. M., & Boscarioli, C. (2016). Introdução à mineração de dados: com aplicação em R. (1 ed.). Rio de Janeiro: Elsevier.

Dias, E. R., Uscocovich, K. J. S., & Lise, A. M. R. (2022). Post-traumatic stress disorder in women who suffer domestic violence in the city of Cascavel-PR. Research, Society and Development, [S. l.], 11, (17), e101111738850. doi:https://doi.org/10.33448/rsd-v11i17.38850

Fayyad, U., Piatestky-Shapiro, G., & Smyth, P. (1996). Knowledge discovery and data mining. Association for the Advancement of Artificial Intelligence (AAAI), [s. l.], 17, (3), 37–54. https://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. (6 ed.). São Paulo: Atlas.

Goldshmidt, R., & Passos, E. (2005). Data mining: conceitos, técnicas, algoritmos, orientações e aplicações. Rio de Janeiro: Elsevier.

Halmenschlager, C. (2002). Um algoritmo para indução de árvores e regras de decisão. (Dissertação de Mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre. https://www.lume.ufrgs.br/bitstream/handle/10183/2755/000325797.pdf

Karakurt, G., Patel, V., Whiting, K., & Koyutürk, M. (2016). Mining electronic health records data: domestic violence and adverse health effects. Journal of Family Violence, 32, (1), 79–87. doi:https://doi.org/10.1007/s10896-016-9872-5

Karystianis, G., Adily, A., Schofield, P. W., Greenberg, D., Jorm, L., Nenadic, G., & Butler, T. (2019). Automated analysis of domestic violence police reports to explore abuse types and victim injuries: text mining study. Journal of Medical Internet Research, 21, (3), e13067. doi:https://doi.org/10.2196/13067

Ko, K. S., & Kim, M. S. (2015). Grounded theory approach on post-divorce social adjustment experience of female victims of domestic violence. Indian Journal of Science and Technology, 8, (18). doi:https://doi.org/10.17485/ijst/2015/v8i18/77013

Lee, H. D. (2005). Seleção de atributos importantes para a extração de conhecimento de bases de dados. (Tese de Doutorado). Universidade de São Paulo, São Carlos. https://www.teses.usp.br/teses/disponiveis/55/55134/tde-22022006-172219/publico/tese_huei.pdf.

Lima, R. A. F. de. (2016). Estratégias de seleção de atributos para detecção de anomalias em transações eletrônicas. (Dissertação de Mestrado). Universidade Federal de Minas Gerais, Belo Horizonte. https://www.dcc.ufmg.br/pos/cursos/defesas/1930M.PDF

Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, [s. l.], 17, (4), 491–502. https://www.cs.binghamton.edu/~lyu/publications/Liu-Yu05TKDE.pdf

Liu, L. Y., Bush, W. S., Koyutürk, M., & Karakurt, G. (2020). Interplay between traumatic brain injury and intimate partner violence: Data Driven Analysis utilizing electronic health records. BMC Women's Health, 20, (1). doi:https://doi.org/10.1186/s12905-020-01104-4

Macedo, D. C. de. (2012). Comparação da redução de dimensionalidade de dados usando seleção de atributos e conceito de framework: um experimento no domínio de clientes. (Dissertação de Mestrado). Universidade Tecnológica Federal do Paraná, Ponta Grossa. https://repositorio.utfpr.edu.br/jspui/bitstream/1/602/3/PG_PPGEP_M_Macedo%2C%20Dayana%20Carla%20de_2012.pdf

Manzanares, R. C., Tarrío, C. T., & Salgado, C. A. (2011). Mediacón em violencia de género. Revista de Mediación, [s. l.], 4, (7), 38-45. https://revistademediacion.com/wp-content/uploads/2013/10/Revista-Mediacion-7-05.pdf

Mcgee, J. V., & Prusak, L. (1994). Gerenciamento estratégico da informação: aumente a competitividade e a eficácia de sua empresa utilizando a informação como uma ferramenta estratégica. Rio de Janeiro: Campus.

Souza, J. T. de. (2017). Métodos de seleção de atributos e análise de componentes principais: um estudo comparativo. (Dissertação de Mestrado). Universidade Tecnológica Federal do Paraná, Ponta Grossa. https://repositorio.utfpr.edu.br/jspui/bitstream/1/2387/1/PG_PPGEP_M_Souza%2C%20Jovani%20Taveira%20de_2017.pdf

Vasconcelos, B. de S. (2002). Mineração de regras de classificação com sistemas de banco de dados objeto-relacional: estudo de caso: classificação de litofácies de poços de petróleo. (Dissertação de Mestrado). Universidade Federal de Campina Grande, Campina Grande. http://docs.computacao.ufcg.edu.br/posgraduacao/dissertacoes/2002/Dissertacao_BenitzDeSouzaVasconcelos.pdf

Published

08/01/2023

How to Cite

COSTA, C. A. da S. .; TSUNODA, D. F. Data analysis on domestic violence against the woman. Research, Society and Development, [S. l.], v. 12, n. 1, p. e20112139561, 2023. DOI: 10.33448/rsd-v12i1.39561. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39561. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences