Analysis of heat sources: Alternatives for improving environmental conditions in an underground gold mine




Mine Ventilation; Health and safety; Effciency; Heat generated; Mining equipment.


Heat generation in underground mines is a factor of extreme influence on the production, safety and comfort of workers. This article aims to analyze heat sources in an underground mine and propose, as one of the alternatives to improve ventilation conditions, replace the diesel fleet with electric. The case study shows that this is the second source of heat, being the first autocompression, the second diesel equipment and the third are the fans. The heat emitted by the rock then stabilizes a certain time having no significance in the temperature in the year of 2019, but in 2026 it will be a significant heat source. This evaluation was carried out in a gold mine near Belo Horizonte, capital of the State of Minas Gerais using the software Ventsim.  In the study, sensitive heat and latent heat would be reduced by about 56% and 80%, respectively, if the change is made. This reduction in the heat generated by the system may improve working conditions because of lower temperature and gas concentration, which reflect on the safety conditions for higher worker's efficiency.


Anderson, R., & De Souza, E. (2017). Heat stress management in underground mines. International Journal of Mining Science and Technology, 27(4), 651-655.

Bascompta, M., Castoñon, A.M., & Samuel, S. (2016). Heat flow assessment in underground mine: an approach to improve the environmental conditions. DYNA, 83(197), 174-179.

Brasil. Ministério do Trabalho e Emprego (MTE). (2017). Secretaria Nacional do Trabalho. NR-15, Atividades e Operações Insalubres. Brasília, Brasil.

Calnan., Y. (2018). Update on electric U/G equipment in mine Borden Gold

Costa, L.C. (2019). Análise via simulação da ventilação em mina subterrânea - Estudo de caso Mina Córrego do Sitio I. Doutorado. PPGEM. UFOP, Ouro Preto, Brasil.

De Souza, E. (2014). Cost Saving Strategies in mine Ventilation. Department of Mining Queen’s University Kingston, Ontario, Canada.

Dorr. (1969). Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. United States Geological Survey Professional Paper 614-A. 110 p.

Gleeson, D. (2019). Agnico continuing to innovate at Kittilä gold mine as shaft project progresses. The International Mining https://

Gyamfi, S., Halim, A., & Martikainen,A. (2022). Development of strategies to reduce ventilation and heating costs in a Swedish sublevel caving mine – a Unique case of LKAB’s Konsuln Mine. Mining, Metallrgy & Exploration, 39, 221-238.

Hall, C. J. (1981). Mine Ventilation Engineering. Society of Mining Engineers of The American Institute of Mining, Metallurgical and Petroleum Engineers. New York: Inc. New York.

Hartman, H.l., Mutmansky, J.M., Ramani, R.V., & Wang, Y.J. (1997). Mine Ventilation and Air Conditioning. 2nd Edition Reprint with corrections ed. Wiley-Interscience.

Jensen, S. (2013) Electric underground

Jones, M.Q.W. (2018). Virgin rock temperatures and geothermal gradients in the Bushveld Complex. SAIMM journal, v.118, n.7.

Kocsis, C., Hardcastle, S., & Keen, B. (2008). A heat study and the modelling of future climatic conditions at Vale Inco’s Coleman Mc Creedy East Mine. 12th U.S. North American Mine Ventilation Symposium: 203–210.

Lafuente, G. E. R. (2017). Introduccion de LHD hybrido a la Industria Minera. Dissertation. Masters. Universidad de Chile. Available in: Accessed on 10 March 2020.

Lima, L.C. (2012). Depósito Au-As-Sb Laranjeiras, em metaturbiditos do Grupo Nova Lima, Quadrilátero Ferrífero, Minas Gerais. Tese, Instituto Geociências, Universidade Federal de Minas Gerais. Belo Horizonte, Brasil, 306 p.

Mcpherson, M.J. (2009). Subsurface Ventilation Engineering. Mine Ventilation Services.

Machado, H. (2011). Gestão de riscos em minas subterrâneas: avaliação da ventilação de minas profundas. Dissertação. Universidade Federal de Ouro Preto. Escola de Minas. Núcleo de Geotecnia (NUGEO), Ouro Preto, Brasil.

Paraszczak, J., Svedlund, E., Fytas, K., & Laflamme, M. (2014). Electrification of loaders and trucks. – A step towards more sustainable underground mining. International Conference on Renewable Energies and Power Quality. Cordoba (Spain).

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. UFSM. https:// Final.pdf.

Pinto, T.A.M. (2018). Consequências do Uso de Carregadeiras Tipo LHD Elétricas em Minas Subterrâneas. Monografia de Graduação. Escola de Minas. Universidade Federal de Ouro Preto.

Stroh, R. (1979). A note on the downcast shaft as a thermal flywheel. Journal of the Mine Ventilation Society of South Africa, 32(4), 77-80.

Tuck, M.A. (2008). Ventilating deep mines - Time for a rethink of ventilation design. In: Proceedings of the Tenth Underground Operators Conference, Launceston, Tasmania. Melbourne: Australasian Institute of Mining and Metallurgy.

Voss, J. (1981). Mine climate basics, advance calculation, ventilation cooling. Glückauf-Betriebsbücher, Vol. 27. Essen: Verlag Glückauf.

Wagner, H. (2010). The management of heat flow in deep mines. Management von Wärmeströmen in tiefliegenden Bergwerken. Geomechanics and Tunnelling, 3(5), 609–621. https://doi:10.1002/geot.201000050

Whillier, A. (1981). Predicting cooling requirements for caving and sublevel stoping in hot rock. Int. Conf. On Caving and Sublevel Stoping. AIME Denver.

Xiaojie, Y., Qiaoyun, H., Jiewen, P., Xiaowei, S., Dinggui, H., & Chao, L. (2011). Progress of heat-hazard treatment in deep mines. Mining Science and Technology (China), 21(2), 295–299. https://doi: 10.1016/j.mstc.2011.02.015




How to Cite

COSTA, L. de V. .; SILVA, J. M. da . Analysis of heat sources: Alternatives for improving environmental conditions in an underground gold mine. Research, Society and Development, [S. l.], v. 12, n. 2, p. e0812239651, 2023. DOI: 10.33448/rsd-v12i2.39651. Disponível em: Acesso em: 7 jun. 2023.