Application of additive manufacturing in Forensic Sciences: new technologies at the service of justice and society

Authors

DOI:

https://doi.org/10.33448/rsd-v12i1.39725

Keywords:

Three-Dimensional Printing; Human identification; Forensic sciences.

Abstract

In Forensic Sciences, additive manufacturing technology has been used for some years as a tool to assist in the process of human identification. The possibility of printing important evidence, such as weapons used in crimes, objects, bones, teeth and body remains, becomes interesting, as it reduces the need to move and handle the original evidence. However, as it is a recent method, analyzes and standardization are necessary to verify the best printing technique for each case. In order to verify what is in literature about the use of additive manufacturing in Forensic Sciences and in the process of human identification, an integrative literature review was carried out in different databases on the use of 3D printing in Forensic Sciences and in the human identification process, using the terms “3D print and forensic sciences”, “3D print and forensics”, addictive manufacturing and forensics”, “3D print and human identification” and “addictive manufacture and human identification”; the period from 2017 to 2022 was established. Although 3D printing seems to be obtained in a singular way, its manufacture can be carried out in different ways, but this diversity does not affect the reliability of the print. Weapons, bones, teeth, wounds, projectile trajectories, fingerprints or organs, among others, are reproduced three-dimensionally, and are commonly used in courts to assist Justice. The results found point to the great precision of the replicas obtained from 3D printing, both quantitatively (metric evaluation) and qualitatively (morphological evaluation), indicating the validation of the application of additive manufacturing in Forensic Sciences, thus helping Justice and society.

References

Almheiri, A. M. O.; Patel, S. S. & Sharma, B. K. (2022). A Conceptual Study of Forgery of 3D Fingerprints and Its Threat to Biometric Security Systems. Journal of Positive School Psychology, 6(4), 4453–4462.

Baier, W.; Norman, D. G.; Donnelly, M. J. & Williams, M. A. (2021). Forensic 3D printing from micro-CT for court use- process validation. Forensic Sci Int, 318(110560). https://doi.org/10.1016/j.forsciint.2020.110560

Barros, F.; Fernandes, C. M. S.; Kuhnen, B.; Scarso Filho, J.; Gonçalves, M.; Gonçalves, V. & Serra, M. C. (2022a). Three-dimensional analysis of the maxillary sinus according to sex, age, skin color, and nutritional status: A study with live Brazilian subjects using cone-beam computed tomography. Arch Oral Biol., 139(105435). https://doi.org/10.1016/j.archoralbio.2022.105435

Barros, F.; Fernandes, C. M. S.; Kuhnen, B.; Scarso Filho, J.; Gonçalves, M. & Serra, M. C. (2022b). Maxillary sinuses’ height/width/depth of Brazilian subjects and influence of sex, age, skin color, and nutritional status: A CBCT study. Forensic Imaging, 31(200522). https://doi.org/10.1016/j.fri.2022.200522

Bezzi, L.; Bezzi, A.; Boscaro, C.; Feistmantl, K.; Gietl, R.; Naponiello, G. & Guzman, M. (2018). Commercial Archaeology and 3D Web Technologies. Journal of Field Archaeology, 43(sup1), S45–S59. https://doi.org/10.1080/00934690.2018.1505410

Carew, R. M. & Errickson, D. (2020). An Overview of 3D Printing in Forensic Science: The Tangible Third-Dimension. J Forensic Sci., 65(5), 1752–1760. https://doi.org/10.1111/1556-4029.14442

Carew, R. M.; French, J. & Morgan, R. M. (2021). Suitability of 3D printing cranial trauma: Prospective novel applications and limitations of 3D replicas. Forensic Sci Int: Reports, 4(100218). https://doi.org/10.1016/j.fsir.2021.100218

Carew, R. M.; Morgan, R. M. & Rando, C. (2019). A Preliminary Investigation into the Accuracy of 3D Modeling and 3D Printing in Forensic Anthropology Evidence Reconstruction. J Forensic Sci., 64(2), 342–352. https://doi.org/10.1111/1556-4029.13917

Carew, R. M.; Iacoviello, F.; Rando, C.; Moss, R. M.; Speller, R.; French, J. et al. (2022) A multi‑method assessment of 3D printed micromorphological osteological features. Int J Legal Med 136(5), 1391-1406. https://doi: 10.1007/s00414-022-02789

Crowther, M.; Reidy, S.; Walker, J.; Islam, M. & Thompson, T. (2021). Application of non-contact scanning to forensic podiatry: A feasibility study. Science and Justice, 61(1), 79–88. https://doi.org/10.1016/j.scijus.2020.08.005

Edwards, J. & Rogers, T. (2018). The Accuracy and Applicability of 3D Modeling and Printing Blunt Force Cranial Injuries. J Forensic Sci., 63(3), 683–691. https://doi.org/10.1111/1556-4029.13627

Fiorenza, L.; Yong, R.; Ranjitkar, S.; Hughes, T.; Quayle, M.; McMenamin, P. G. & Adams, J. W. (2018). Technical note: The use of 3D printing in dental anthropology collections. Am J Phys Anthropol., 167(2), 400–406. https://doi.org/10.1002/ajpa.23640

França, G. V. (2017). Medicina Legal. (11.ed.), Guanabara Koogan.

Gioster-Ramos, M. L.; Silva, E. C. A.; Nascimento, C. R.; Fernandes, C. M. S. & Serra, M. C. (2021). Técnicas de identificação humana em Odontologia Legal. Research, Society and Development, 10(3), e20310313200. http://dx.doi.org/10.33448/rsd-v10i3.13200

História da impressão 3D. https://www.printit3d.com.br/post/impress%C3%A3o-3d-hist%C3%B3ria-das-impressoras-3d

Interpol. (2018). Interpol Disaster Victim Identification Guide.

Jayakrishnan, J.M.; Reddy, J. & Vinod Kumar, R. B. (2021). Role of forensic odontology and anthropology in the identification of human remains. J Oral Maxillofac Pathol. 25(3), 543–547. https://doi.org/10.4103/jomfp.JOMFP

Johnson, A.; Jani, G.; Carew, R. & Pandey, A. (2021). Assessment of the accuracy of 3D printed teeth by various 3D printers in forensic odontology. Forensic Sci Int, 328(111044). https://doi.org/10.1016/j.forsciint.2021.111044

Li, S. Y.; Turner, J.; Golightly, S., Zelbst, P. & Yu, J. (2021). Potential impacts of 3D modeling and 3D printing in firearm toolmark examinations. J Forensic Sci. , 66(6), 2201–2207. https://doi.org/10.1111/1556-4029.14790

Nagi, R.; Aravinda, K.; Rakesh, N.; Jain, S.; Kaur, N. & Mann, A. (2019). Digitization in forensic odontology: A paradigm shift in forensic investigations. J Forensic Dent Sci., 11(1), 5. https://doi.org/10.4103/jfo.jfds_55_19

Pavan Kalyan, B. & Kumar, L. (2022). 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS Pharm Sci Tech, 23(4). https://doi.org/10.1208/s12249-022-02242-8

Roncato, P. A.; Serra, M. C.; Capote, T. S. O. & Fernandes, C. M. S. (2022). Uso de tecnologias no ensino de anatomia humana em cursos da área da saúde. Research, Society and Development, 11(16), e520111638426. https://doi.org/10.33448/rsd-v11i16.38426.

Santos-Junior, A. O.; Fernandes, C. M. S.; Tavares, K. I. M. C. & Serra, M. C. (2022). Aplicação da tomografia computadorizada de feixe cônico na estimativa de idade. Research, Society and Development, 11(11), e112111132861. https://doi.org/10.33448/rsd-v11i11.32861

Silva J. V. L.; Oliveira M. F.; Bezzi A.; Bezzi L.; Moraes C. A. C.; Dias P. E. M.; Fernandes C. M. S.; Serra M. C.; Sperling D. M.; Fecchio R.; Tavares H. O. R.; Tavares S. A. S. & Rabello R. (2017). Aplicações da AM em áreas diversas. In: Volpato N (Org). Manufatura aditiva. Tecnologias e aplicações da impressão 3D. Blucher. p. 375-396.

Simon, G.; Tóth, D.; Heckmann, V. & Poór, V. S. (2022). Application of 3D printing in assessment and demonstration of stab injuries. Int J Legal Med. , 136(5), 1431–1442. https://doi.org/10.1007/s00414-022-02846-6

Smitha, T.; Sheethal, H. S.; Hema, K. N. & Franklin, R. (2019). Forensic odontology as a humanitarian tool. J Oral Maxillofac Pathol., 21(3), 244–251. https://doi.org/10.4103/jomfp.JOMFP

Tavares, K. I. M. C.; Fernandes, C. M. S.; Santos-Júnior, A. O. & Serra, M. C. O emprego da microtomografia computadorizada na estimativa da idade. (2022) Research, Society and Development., 11(7), e39711730010. http://dx.doi.org/10.33448/rsd-v11i7.730010

Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K. et al. (2021). A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning, 2021(9950131). https://doi.org/10.1155/2021/9950131 .

Vagac, M.; Povinsky, M. & Melichercik, M. (2019). Obtaining tire tread model from its real world photo. INFORMATICS 2019 - IEEE 15th International Scientific Conference on Informatics, Proceedings, 167–170. https://doi.org/10.1109/Informatics47936.2019.9119277

Vargas, B. F. S.; Coutinho, M. A. & Coutinho, F. S. (2021). Impressão 3D na medicina legal e resolução de crimes: revisão integrativa da literatura. Revista de Medicina, 100(1), 62–69. https://doi.org/10.11606/issn.1679-9836.v100i1p62-69

Published

12/01/2023

How to Cite

MATOS, I. A. F. de .; COSTA, V. B.; GODOI, M. A. de; FERNANDES, C. M. da S.; SERRA, M. da C. Application of additive manufacturing in Forensic Sciences: new technologies at the service of justice and society. Research, Society and Development, [S. l.], v. 12, n. 1, p. e28412139725, 2023. DOI: 10.33448/rsd-v12i1.39725. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39725. Acesso em: 26 apr. 2024.

Issue

Section

Health Sciences