Proposal of a framework for improving multi-criteria decision-making related to epidemics using heterogeneous spatial data and evolutionary algorithms

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.39844

Keywords:

Decision-making; Spatio-Temporal data analysis; Evolutionary algorithm; Data fusion; Map visualization.

Abstract

The decision-making of complex problems, such as epidemics monitoring and control, involves multiple heterogeneous data and spatial and temporal aspects. Most problems cannot be reduced to one objective, characterized as multi-criteria decision-making (MCDM) problems. Adding temporal and spatial aspects further increases the complexity of addressing those problems. This paper proposed a framework that uses evolutionary algorithms and map algebra for addressing spatial and temporal multidimensional complex problems. It was evaluated in a case study of dengue and tuberculosis diseases in an urban environment, considering multi-resolution data and a genetic algorithm. Several analyses were conducted, generating maps and information essential to generate insights into the problem and a better understanding of the spatial relations between the variables. The framework and the code implemented could be applied to different problems, spatial resolutions, and objectives.

References

Almeida, E. (2012). Econometria espacial. Alínea.

Alves, J. D. G. (2020). O Índice Paulista de Vulnerabilidade Social (IPVS) como ferramenta para promoção políticas públicas: aplicação do índice no município de Piracicaba–São Paulo. Anais, 1-6.

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.

Câmara, G., Monteiro, A. M., Fucks, S. D., & Carvalho, M. S. (2004). Análise espacial e geoprocessamento. Análise espacial de dados geográficos. Brasília: EMBRAPA, 21-54.

Chabuk, A., Al-Ansari, N., Hussain, H. M., Knutsson, S., Pusch, R., & Laue, J. (2017). Combining GIS applications and method of multi-criteria decision-making (AHP) for landfill siting in Al-Hashimiyah Qadhaa, Babylon, Iraq. Sustainability, 9(11), 1932.

Covre, E. R., Pereira, N. D., Oliveira, N. N. D., Charlo, P. B., Oliveira, M. L. F. D., Oliveira, R. R. D., ... & Salci, M. A. (2022). Correlação espacial da covid-19 com leitos de unidades de terapia intensiva no Paraná. Revista de Saúde Pública, 56.

Duan, C., Zhang, J., Chen, Y., Lang, Q., Zhang, Y., Wu, C., & Zhang, Z. (2022). Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China. Remote Sensing, 14(13), 3101.

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing (Vol. 53, p. 18). Berlin: springer.

Ferreira, P. S., & Silva, C. A. D. (2020). O método AHP e a Álgebra de Mapas para determinar a fragilidade ambiental da bacia hidrográfica do Rio Brilhante (Mato Grosso do Sul/Brasil), proposições para a gestão do território. Confins. Revue franco-brésilienne de géographie/Revista franco-brasilera de geografia, (46).

Goldbarg, E., Goldbarg, M., & Luna, H. (2017). Otimização combinatória e metaheurísticas: algoritmos e apliacações. Elsevier Brasil.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM journal on computing, 2(2), 88-105.

Hongoh, V., Hoen, A. G., Aenishaenslin, C., Waaub, J. P., Bélanger, D., & Michel, P. (2011). Spatially explicit multi-criteria decision analysis for managing vector-borne diseases. International Journal of Health Geographics, 10(1), 1-9.

Li, H., Calder, C. A., & Cressie, N. (2007). Beyond Moran's I: testing for spatial dependence based on the spatial autoregressive model. Geographical analysis, 39(4), 357-375.

Lopes, G. R., Delbem, A. C., da Silva, R. F., Júnior, C. B., de Mattos, S. H. V. L., Scatolini, D., ... & Saraiva, A. M. (2022, November). MultiMaps: a tool for decision-making support in the analyzes of multiple epidemics. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial Computing for Epidemiology (pp. 22-25).

Lopes, G. R., Pelarigo, K. J., Delbem, A. C., & de Sousa, J. B. (2022). Análise Exploratória de Dados Espaciais com Python. Sociedade Brasileira de Computação.

Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science (Vol. 1, pp. 55-77). New York: Springer.

Matsumoto, P. S. S., da Castro Catão, R., & Guimarães, R. B. (2017). Mentiras com mapas na Geografia da Saúde: métodos de classificação e o caso da base de dados de LVA do SINAN e do CVE. Hygeia: Revista Brasileira de Geografia Médica e da Saúde, 13(26), 211.

MORAES, R. M., NOGUEIRA, J. A., & SOUSA, A. C. (2014). A new architecture for a spatio-temporal decision support system for epidemiological purposes. In Decision Making and Soft Computing: Proceedings of the 11th International FLINS Conference (pp. 17-23).

Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17-23.

Niño, L., Gutiérrez-Lesmes, O., Diaz-Celis, C. A., & Manrique-Abril, F. (2020). Riesgo de transmisión de SARS-CoV-2: evaluación espacial multicriterio en un municipio de Colombia, 2020. Revista de Salud Pública, 22(2).

Odu, G. O. (2019). Weighting methods for multi-criteria decision making technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449-1457.

Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. (2008). Spatial analysis in epidemiology. OUP Oxford.

ur Rahman, A. (2022). Geo-Spatial Disease Clustering for Public Health Decision Making. Informatica, 46(6).

Vanolya, N. M., Jelokhani-Niaraki, M., & Toomanian, A. (2019). Validation of spatial multicriteria decision analysis results using public participation GIS. Applied Geography, 112, 102061.

Yalew, S. G., Van Griensven, A., & van der Zaag, P. (2016). AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability assessment. Computers and Electronics in Agriculture, 128, 1-8.

Downloads

Published

13/01/2023

How to Cite

LOPES, G. R. .; SILVA, R. F. da .; PELARIGO, K. J. .; YAMAMURA, M.; DELBEM, A. C. B. .; SCATOLINI, D.; GHIGLIENO, F.; SARAIVA, A. M. . Proposal of a framework for improving multi-criteria decision-making related to epidemics using heterogeneous spatial data and evolutionary algorithms. Research, Society and Development, [S. l.], v. 12, n. 2, p. e0212239844, 2023. DOI: 10.33448/rsd-v12i2.39844. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39844. Acesso em: 23 dec. 2024.

Issue

Section

Exact and Earth Sciences