Valorization potential of coffee grounds waste as a renewable pore-forming agent to produce low-cost porous ceramic support
DOI:
https://doi.org/10.33448/rsd-v12i2.40023Keywords:
Coffee grounds waste; Porogenic material; Kaolin-based support; Porosity; Valorization.Abstract
Every day expressive amounts of coffee grounds waste generated during making the coffee beverage are produced worldwide. The aim of this work was to investigate the valorization potential of the coffee grounds waste as an alternative pore-forming agent to produce porous kaolin-based ceramic supports. For this purpose, kaolin-based ceramic support formulations containing up to 40 mass % of coffee grounds waste were pressed and fired at temperatures ranging from 1000 to 1200 ºC. The sintering behavior and technical properties (linear shrinkage, mass loss, apparent density, mechanical strength, and apparent porosity) have been investigated. The microstructural evolution has been accompanied by scanning electron microscopy (SEM) and 3D-confocal microscopy. The obtained results demonstrated that the coffee grounds waste could serve as a very effective pore-forming agent to produce kaolin-based ceramic support with highly porous structures. Such ceramic supports incorporated with coffee grounds waste exhibited values of apparent porosity within the range of 41.87 % to 70.96 %. This results suggests that the coffee grounds waste, in the range of 10 - 40 mass %, could be a highly promising renewable porogenic material to be valorized to produce low-cost kaolin-based ceramic support with good porosity properties. This new approach could be an innovative alternative for the sustainable use of coffee grounds waste.
References
Abdullayev, A., Bekheet, M. F., Hanaor, D. A. H., & Gurlo, A. (2019). Materials and applications for low-cost ceramic membranes. Membranes, 9, 1-31. https://doi.org/10.3390/membranes9090105
ABIC – Brazilian Association of the Coffee Industry (2022). Coffee industry indicators: evolution of internal coffee consumption in Brazil. https://estatisticas.abic.com.br/estatisticas/indicadores-da-industria/
Aissat, M., Hamouda, S., Bettahar, N., Tarboush, B. J. A., & Bahmani, A. (2019). Characterization and application of ceramic membranes prepared from Algerian kaolin. Cerâmica, 65(376), 554-561. http://dx.doi.org/10.1590/0366-69132019653762671
Ali, M. B., Hamdi, N., Rodriguez, M. A., Mahmoudi, K., & Srasra, E. (2018). Preparation and characterization of new ceramic membranes for ultrafiltration. Ceramics International, 44(2), 2328-2335. http://dx.doi.org/10.1016/j.ceramint.2017.10.199
Arya, S. S., Venkatram, R., More, P. R., & Vijayan, P. (2021). The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 59, 429-444. https://doi.org/10.1007/s13197-021-05032-5
American Society for Testing and Materials: ASTM. (2018a). ASTM C326-09: Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays. ASTM Int. West Conshohocken, PA.
American Society for Testing and Materials: ASTM. (2018b). ASTM C373-18: Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-tile Fired Ceramic Whiteware Products. ASTM Int. West Conshohocken, PA.
Atabani, A. E., Al-Muhtasebb, A. H., Kumar, G., Saratale, G. D., Aslam, M.., Khan, H. A., Said, Z. & Eyas Mahmoud, E. (2019). Valorization of spent coffee grounds into biofuels and value-added products: pathway towards integrated bio-refinery. Fuel, 254, 115640. https://doi.org/10.1016/j.fuel.2019.115640
Azaman, F., Nor, A. A. A. M., Abdullah, W. R. W., Razali, M. H., Zulkifli, R. C., Zaini, M. A. A. Z. & Ali, A. (2021). Review on natural clay ceramic membrane: fabrication and application in water and wastewater treatment. Malaysian Journal of Fundamental and Applied Sciences, 17(1), 62-78. https://doi.org/10.11113/mjfas.v17.n1.2169
Banu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 302, 122821. https://doi.org/10.1016/j.biortech.2020.122821
Brunerová, A., Roubík, H., Brožek, M., Haryanto, A., Hasanudin, U., Iryani, D. A., & Herák, D. (2020). Valorization of bio-briquette fuel by using spent coffee ground as an external additive. Energies, 13, 1-15. https://doi.org/10.3390/en13010054
Cerino-Córdova, F. J., Dávila-Guzmán, N. E., León, A. M. G., Salazar-Rabago, J. J., & Soto-Regalado, E. (2020). Revalorization of coffee waste. In: Castanheira, D.T. (ed.) Coffee - Production and Research, pp. 1-26. IntechOpen. http://dx.doi.org/10.5772/intechopen.92303
Cervera-Mata, A., Navarro-Alarcón, M., Delgado, G., Pastoriza, S., Montilla-Gómez, J., Llopis, J., Sánchez-González, C., & Rufián-Henares, J. A. (2019). Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) and are an ecological alternative to inorganic fertilizers. Food Chemistry, 282, 1-8. https://doi.org/10.1016/j.foodchem.2018.12.101
Chen, F., Sun, Z., & Xu, J. (2001). Mode I fracture analysis of the double edge cracked Brazilian disk using a weight function method. International Journal of Rock Mechanics and Mining Sciences, 38(3), 475-479. https://doi.org/10.1016/S1365-1609(01)00008-9
Coutinho, N. C., Paes Jr, H. R., & Holanda, J. N. F. (2022). Effect of firewood ash waste on the densification behavior of electrical siliceous porcelain formulations. Silicon, 14, 10591-10601. https://doi.org/10.1007/s12633-022-01799-0
Dávila-Guzmán, N. E., Cerino-Córdova, F. J., Soto-Regalado, E., Rangel-Mendez, J. R., Díaz-Flores, P. E., Garza-González, M. T., & Loredo-Medrano, J. A. (2013). Copper biosorption by spent coffee ground: equilibrium, kinetics, and mechanism. Clean Soil Air Water, 41(6), 557-564.
https://doi.org/10.1002/clen.201200109
Elgamouz, A., Tijani, N., Shetiadi, I., Hasan, K., & Kawam, M. A. (2019). Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support. Heliyon, 5(8), e02281. https://doi.org/10.1016/j.heliyon.2019.e02281
Eliche-Quesada, D., Pérez-Villarejo, L., Iglesias-Godino, F. J., Martínez-García, C., & Corpas-Iglesias, F. A. (2011). Incorporation of coffee grounds into clay brick production. Advances in Applied Ceramics, 110(4), 225-232. https://doi.org/10.1179/1743676111Y.0000000006
Fett, T. (1998). T-stress in rectangular plates and circular disks. Engineering Fracture Mechanics, 60(5-6), 631-652. https://doi.org/10.1016/S0013-7944(98)00038-1
Gomes, C. F. (1988). Argilas: O Que São e Para Que Servem. Fundação Calouste Gulbenkian, Lisboa
Habert, A. C., Borges, C. P., & Nobrega, R. (2006). Processos de Separação por Membranas. E-Papers Serviços Editoriais Ltda., Rio de Janeiro
Hermann, K. A. C., Magnago, R. F., Bianchet, R. T., Moecke, E. H. S., & Cubas, A. L V. (2019). Evaluation of the use of coffee grounds for use in cosmetic products. Revista Virtual de Química, 11(6), 1810-1822. http://dx.doi.org/10.21577/1984-6835.20190126
Hossain, S. K. S., Mathur, L., & Roy, P. K. (2018). Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. Journal of Asian Ceramic Societies, 6(4), 299-313. https://doi.org/10.1080/21870764.2018.1539210
Hubadillah, S. K., Othman, M. H. D., Ismail, A. F., Rahman, M. A., Jaafar, J., Iwamoto, Y., Honda, S., Dzahir, M. I. H. M., & Yusop, M. Z. M. (2018a). Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceramics International, 44(9), 10498-10509. https://doi.org/10.1016/j.ceramint.2018.03.067
Hubadillah, S. K., Othman, M. H. D., Matsura, T., Ismail, A. F., Rahman, M. A., Harun, Z., Jaafar, J., & Nomura, M. (2018b). Fabrications and applications of low cost ceramic membrane from kaolin: a comprehensive review. Ceramics International, 44(5), 4538-4560. https://doi.org/10.1016/j.ceramint.2017.12.215
Jeguirim, M.., Limousy, L., & Dutournie, P. (2014). Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research and Design, 92(10), 1876-1882. https://doi.org/10.1016/j.cherd.2014.04.018
Jiang, F., Zhang, L., Jiang, Z., Li, C., Cang, D., Liu, X., Xuan, Y., & Ding, Y. (2019). Diatomite-based porous ceramics with high apparent porosity: pore structure modification using calcium carbonate. Ceramics International, 45(5), 6085-6092. https://doi.org/10.1016/j.ceramint.2018.12.082
Kouras, N., Harabi, A., Bouzerara, F., Foughali, L., Policicchio, A., Stelitano, S., Galiano, F., & Figoli, A. (2017). Macro-porous ceramic supports for membranes prepared from quartz sand and calcite mixtures. Journal of the European Ceramic Society, 37(9), 3159-3165. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.03.059
Kovalcik, A., Obruca, S., & Marova, I. (2018). Valorization of spent coffee grounds: a review. Food and Bioproducts Processing, 110, 104–119. https://doi.org/10.1016/j.fbp.2018.05.002
Kumar, R. V., Ghoshal, A. K., & Pugazhenthi, G. (2015). Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. Journal of Membrane Science, 490, 92-102. https://doi.org/10.1016/j.memsci.2015.04.066
Laksaci, H., Khelifi, A., Trari, M., & Addoun, A. (2017). Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. Journal of Cleaner Production, 147, 254–262. https://doi.org/10.1016/j.jclepro.2017.01.102
Leow, Y., Yew, P. Y. M., Chee, P. L., Loh, X. J., & Kai D. (2021). Recycling of spent coffee grounds for useful extracts and green composites. RSC Advances, 11, 2682-2692. https://doi.org/10.1039/DORA09379C
Liang, D., Huang, J., Zhang, Y., Zhang, Z., Chen, H., & Zhang, H. (2021). Influence of dextrin content and sintering temperature on the properties of coal fly ash-based tubular ceramic membrane for flue gas moisture recovery. Journal of the European Ceramic Society, 41(11), 5696-5710. https://doi.org/10.1016/j.jeurceramsoc.2021.04.055
Lima, L. K. S., Dantas, H. K. B., Santana, L. N. L,. & Lira, H. L. (2018). Preparation of tubular ceramic membranes using kaolin and alumina as main raw materials. Revista Eletrônica de Materiais e Processos, 13(3), 163-169.
Liu, J., Dong, Y., Dong, X., Hampshire, S., Zhu, L., Zhu, Z., & Li, L. (2016). Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite. Journal of the European Ceramic Society, 36(4), 1059-1071. https://doi.org/10.1016/j.jeurceramsoc.2015.11.012
Manni, A., El Haddar, A., El Hassani, I. E. A., El Bouari, A., & Sadik, C. (2019). Valorization of coffee waste with Moroccan clay to produce a porous red ceramics (class BIII). Boletín de la Sociedad Española de Cerámica y Vidrio, 58(5), 211-220. https://doi.org/10.1016/j.bsecv.2019.03.001
Milheiro, F. A. M., Freire, M. N., Silva, A. G. P., & Holanda, J. N. F. (2005). Densification behaviour of a red firing Brazilian kaolinitic clay. Ceramics International, 31(5), 757-763. https://doi.org/10.1016/j.ceramint.2004.08.010
Murthy, P. S., & Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition - a review. Resources, Conservation and Recycling, 66, 45-58. https://doi.org/10.1016/j.resconrec.2012.06.005
Mustafa, M. K., Gabelica, I., Mandić, V., Veseli, R., & Ćurković L. (2022). Reusing waste coffee grounds in the preparation of porous alumina ceramics. Sustainability, 14(21), 14244. https://doi.org/10.3390/su142114244
Pujol, D., Liu, C., Gominho, J., Olivella, M. A., Fiol, N., Villaescusa, I., & Pereira, H. (2013). The chemical composition of exhausted coffee waste. Industrial Crops and Products, 50, 423-429. https://doi.org/10.1016/j.indcrop.2013.07.056
Rambo, M. K. D., Schmidt, F. L., & Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 144, 696-703. http://dx.doi.org/10.1016/j.talanta.2015.06.045
Rawat, M., & Bulasara, V. K. (2018). Synthesis and characterization of low-cost ceramic membranes from fly ash and kaolin for humic acid separation. Korean Journal of Chemical Engineering, 35, 725-733. https://doi.org/10.1007/s11814-017-0316-6
Saberian, M., Li, J., Donnoli, A., Bonderenko, E., Oliva, P., Gill, B., Lockrey, S., & Siddique, R. (2021). Recycling of spent coffee grounds in construction materials: A review, Journal of Cleaner Production, 289, 125837. https://doi.org/10.1016/j.jclepro.2021.125837
Saini, P., Bulasara, V. K., & Reddy, A. S. (2019). Performance of a new ceramic microfiltration membrane based on kaolin in textile industry wastewater treatment. Chemical Engineering Communications, 206(2), 227-236. https://doi.org/10.1080/00986445.2018.1482281
Santos, P. S. (1989). Clays Science and Technology. v. 1, (2nd ed.), Edgard Blücher Ltda, São Paulo.
Soares, L. S., Moris, V. A. S., Yamaji, F. M., & Paiva, J. M. F. (2015). Use of waste coffee grounds and sawdust in briquettes molding and evaluation of properties. Revista Matéria, 20(2), 550–560. https://doi.org/10.1590/S1517-707620150002.0055
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Felipe Sardinha Maciel; Isabela Oliveira Rangel Areias; José Nilson França de Holanda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.