Valorization potential of coffee grounds waste as a renewable pore-forming agent to produce low-cost porous ceramic support

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.40023

Keywords:

Coffee grounds waste; Porogenic material; Kaolin-based support; Porosity; Valorization.

Abstract

Every day expressive amounts of coffee grounds waste generated during making the coffee beverage are produced worldwide. The aim of this work was to investigate the valorization potential of the coffee grounds waste as an alternative pore-forming agent to produce porous kaolin-based ceramic supports. For this purpose, kaolin-based ceramic support formulations containing up to 40 mass % of coffee grounds waste were pressed and fired at temperatures ranging from 1000 to 1200 ºC. The sintering behavior and technical properties (linear shrinkage, mass loss, apparent density, mechanical strength, and apparent porosity) have been investigated. The microstructural evolution has been accompanied by scanning electron microscopy (SEM) and 3D-confocal microscopy. The obtained results demonstrated that the coffee grounds waste could serve as a very effective pore-forming agent to produce kaolin-based ceramic support with highly porous structures. Such ceramic supports incorporated with coffee grounds waste exhibited values of apparent porosity within the range of 41.87 % to 70.96 %. This results suggests that the coffee grounds waste, in the range of 10 - 40 mass %, could be a highly promising renewable porogenic material to be valorized to produce low-cost kaolin-based ceramic support with good porosity properties. This new approach could be an innovative alternative for the sustainable use of coffee grounds waste.

Author Biographies

Felipe Sardinha Maciel, Universidade Estadual do Norte Fluminense Darcy Ribeiro

Postgraduate Program in Materials Engineering and Science (PPGECM), Northern Fluminense State University Darcy Ribeiro (UENF)

Isabela Oliveira Rangel Areias, Universidade Estadual do Norte Fluminense Darcy Ribeiro

Group of Ceramic Materials, Laboratory of Advanced Materials, Northern Fluminense State University Darcy Ribeiro

José Nilson França de Holanda, Universidade Estadual do Norte Fluminense Darcy Ribeiro

Laboratory of Advanced Materials/GMCer, Northern Fluminense State University

Darcy Ribeiro, Brazil

References

Abdullayev, A., Bekheet, M. F., Hanaor, D. A. H., & Gurlo, A. (2019). Materials and applications for low-cost ceramic membranes. Membranes, 9, 1-31. https://doi.org/10.3390/membranes9090105

ABIC – Brazilian Association of the Coffee Industry (2022). Coffee industry indicators: evolution of internal coffee consumption in Brazil. https://estatisticas.abic.com.br/estatisticas/indicadores-da-industria/

Aissat, M., Hamouda, S., Bettahar, N., Tarboush, B. J. A., & Bahmani, A. (2019). Characterization and application of ceramic membranes prepared from Algerian kaolin. Cerâmica, 65(376), 554-561. http://dx.doi.org/10.1590/0366-69132019653762671

Ali, M. B., Hamdi, N., Rodriguez, M. A., Mahmoudi, K., & Srasra, E. (2018). Preparation and characterization of new ceramic membranes for ultrafiltration. Ceramics International, 44(2), 2328-2335. http://dx.doi.org/10.1016/j.ceramint.2017.10.199

Arya, S. S., Venkatram, R., More, P. R., & Vijayan, P. (2021). The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 59, 429-444. https://doi.org/10.1007/s13197-021-05032-5

American Society for Testing and Materials: ASTM. (2018a). ASTM C326-09: Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays. ASTM Int. West Conshohocken, PA.

American Society for Testing and Materials: ASTM. (2018b). ASTM C373-18: Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-tile Fired Ceramic Whiteware Products. ASTM Int. West Conshohocken, PA.

Atabani, A. E., Al-Muhtasebb, A. H., Kumar, G., Saratale, G. D., Aslam, M.., Khan, H. A., Said, Z. & Eyas Mahmoud, E. (2019). Valorization of spent coffee grounds into biofuels and value-added products: pathway towards integrated bio-refinery. Fuel, 254, 115640. https://doi.org/10.1016/j.fuel.2019.115640

Azaman, F., Nor, A. A. A. M., Abdullah, W. R. W., Razali, M. H., Zulkifli, R. C., Zaini, M. A. A. Z. & Ali, A. (2021). Review on natural clay ceramic membrane: fabrication and application in water and wastewater treatment. Malaysian Journal of Fundamental and Applied Sciences, 17(1), 62-78. https://doi.org/10.11113/mjfas.v17.n1.2169

Banu, J. R., Kavitha, S., Kannah, R. Y., Kumar, M. D., Atabani, A. E., & Kumar, G. (2020). Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresource Technology, 302, 122821. https://doi.org/10.1016/j.biortech.2020.122821

Brunerová, A., Roubík, H., Brožek, M., Haryanto, A., Hasanudin, U., Iryani, D. A., & Herák, D. (2020). Valorization of bio-briquette fuel by using spent coffee ground as an external additive. Energies, 13, 1-15. https://doi.org/10.3390/en13010054

Cerino-Córdova, F. J., Dávila-Guzmán, N. E., León, A. M. G., Salazar-Rabago, J. J., & Soto-Regalado, E. (2020). Revalorization of coffee waste. In: Castanheira, D.T. (ed.) Coffee - Production and Research, pp. 1-26. IntechOpen. http://dx.doi.org/10.5772/intechopen.92303

Cervera-Mata, A., Navarro-Alarcón, M., Delgado, G., Pastoriza, S., Montilla-Gómez, J., Llopis, J., Sánchez-González, C., & Rufián-Henares, J. A. (2019). Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) and are an ecological alternative to inorganic fertilizers. Food Chemistry, 282, 1-8. https://doi.org/10.1016/j.foodchem.2018.12.101

Chen, F., Sun, Z., & Xu, J. (2001). Mode I fracture analysis of the double edge cracked Brazilian disk using a weight function method. International Journal of Rock Mechanics and Mining Sciences, 38(3), 475-479. https://doi.org/10.1016/S1365-1609(01)00008-9

Coutinho, N. C., Paes Jr, H. R., & Holanda, J. N. F. (2022). Effect of firewood ash waste on the densification behavior of electrical siliceous porcelain formulations. Silicon, 14, 10591-10601. https://doi.org/10.1007/s12633-022-01799-0

Dávila-Guzmán, N. E., Cerino-Córdova, F. J., Soto-Regalado, E., Rangel-Mendez, J. R., Díaz-Flores, P. E., Garza-González, M. T., & Loredo-Medrano, J. A. (2013). Copper biosorption by spent coffee ground: equilibrium, kinetics, and mechanism. Clean Soil Air Water, 41(6), 557-564.

https://doi.org/10.1002/clen.201200109

Elgamouz, A., Tijani, N., Shetiadi, I., Hasan, K., & Kawam, M. A. (2019). Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support. Heliyon, 5(8), e02281. https://doi.org/10.1016/j.heliyon.2019.e02281

Eliche-Quesada, D., Pérez-Villarejo, L., Iglesias-Godino, F. J., Martínez-García, C., & Corpas-Iglesias, F. A. (2011). Incorporation of coffee grounds into clay brick production. Advances in Applied Ceramics, 110(4), 225-232. https://doi.org/10.1179/1743676111Y.0000000006

Fett, T. (1998). T-stress in rectangular plates and circular disks. Engineering Fracture Mechanics, 60(5-6), 631-652. https://doi.org/10.1016/S0013-7944(98)00038-1

Gomes, C. F. (1988). Argilas: O Que São e Para Que Servem. Fundação Calouste Gulbenkian, Lisboa

Habert, A. C., Borges, C. P., & Nobrega, R. (2006). Processos de Separação por Membranas. E-Papers Serviços Editoriais Ltda., Rio de Janeiro

Hermann, K. A. C., Magnago, R. F., Bianchet, R. T., Moecke, E. H. S., & Cubas, A. L V. (2019). Evaluation of the use of coffee grounds for use in cosmetic products. Revista Virtual de Química, 11(6), 1810-1822. http://dx.doi.org/10.21577/1984-6835.20190126

Hossain, S. K. S., Mathur, L., & Roy, P. K. (2018). Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. Journal of Asian Ceramic Societies, 6(4), 299-313. https://doi.org/10.1080/21870764.2018.1539210

Hubadillah, S. K., Othman, M. H. D., Ismail, A. F., Rahman, M. A., Jaafar, J., Iwamoto, Y., Honda, S., Dzahir, M. I. H. M., & Yusop, M. Z. M. (2018a). Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceramics International, 44(9), 10498-10509. https://doi.org/10.1016/j.ceramint.2018.03.067

Hubadillah, S. K., Othman, M. H. D., Matsura, T., Ismail, A. F., Rahman, M. A., Harun, Z., Jaafar, J., & Nomura, M. (2018b). Fabrications and applications of low cost ceramic membrane from kaolin: a comprehensive review. Ceramics International, 44(5), 4538-4560. https://doi.org/10.1016/j.ceramint.2017.12.215

Jeguirim, M.., Limousy, L., & Dutournie, P. (2014). Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research and Design, 92(10), 1876-1882. https://doi.org/10.1016/j.cherd.2014.04.018

Jiang, F., Zhang, L., Jiang, Z., Li, C., Cang, D., Liu, X., Xuan, Y., & Ding, Y. (2019). Diatomite-based porous ceramics with high apparent porosity: pore structure modification using calcium carbonate. Ceramics International, 45(5), 6085-6092. https://doi.org/10.1016/j.ceramint.2018.12.082

Kouras, N., Harabi, A., Bouzerara, F., Foughali, L., Policicchio, A., Stelitano, S., Galiano, F., & Figoli, A. (2017). Macro-porous ceramic supports for membranes prepared from quartz sand and calcite mixtures. Journal of the European Ceramic Society, 37(9), 3159-3165. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.03.059

Kovalcik, A., Obruca, S., & Marova, I. (2018). Valorization of spent coffee grounds: a review. Food and Bioproducts Processing, 110, 104–119. https://doi.org/10.1016/j.fbp.2018.05.002

Kumar, R. V., Ghoshal, A. K., & Pugazhenthi, G. (2015). Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. Journal of Membrane Science, 490, 92-102. https://doi.org/10.1016/j.memsci.2015.04.066

Laksaci, H., Khelifi, A., Trari, M., & Addoun, A. (2017). Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. Journal of Cleaner Production, 147, 254–262. https://doi.org/10.1016/j.jclepro.2017.01.102

Leow, Y., Yew, P. Y. M., Chee, P. L., Loh, X. J., & Kai D. (2021). Recycling of spent coffee grounds for useful extracts and green composites. RSC Advances, 11, 2682-2692. https://doi.org/10.1039/DORA09379C

Liang, D., Huang, J., Zhang, Y., Zhang, Z., Chen, H., & Zhang, H. (2021). Influence of dextrin content and sintering temperature on the properties of coal fly ash-based tubular ceramic membrane for flue gas moisture recovery. Journal of the European Ceramic Society, 41(11), 5696-5710. https://doi.org/10.1016/j.jeurceramsoc.2021.04.055

Lima, L. K. S., Dantas, H. K. B., Santana, L. N. L,. & Lira, H. L. (2018). Preparation of tubular ceramic membranes using kaolin and alumina as main raw materials. Revista Eletrônica de Materiais e Processos, 13(3), 163-169.

Liu, J., Dong, Y., Dong, X., Hampshire, S., Zhu, L., Zhu, Z., & Li, L. (2016). Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite. Journal of the European Ceramic Society, 36(4), 1059-1071. https://doi.org/10.1016/j.jeurceramsoc.2015.11.012

Manni, A., El Haddar, A., El Hassani, I. E. A., El Bouari, A., & Sadik, C. (2019). Valorization of coffee waste with Moroccan clay to produce a porous red ceramics (class BIII). Boletín de la Sociedad Española de Cerámica y Vidrio, 58(5), 211-220. https://doi.org/10.1016/j.bsecv.2019.03.001

Milheiro, F. A. M., Freire, M. N., Silva, A. G. P., & Holanda, J. N. F. (2005). Densification behaviour of a red firing Brazilian kaolinitic clay. Ceramics International, 31(5), 757-763. https://doi.org/10.1016/j.ceramint.2004.08.010

Murthy, P. S., & Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition - a review. Resources, Conservation and Recycling, 66, 45-58. https://doi.org/10.1016/j.resconrec.2012.06.005

Mustafa, M. K., Gabelica, I., Mandić, V., Veseli, R., & Ćurković L. (2022). Reusing waste coffee grounds in the preparation of porous alumina ceramics. Sustainability, 14(21), 14244. https://doi.org/10.3390/su142114244

Pujol, D., Liu, C., Gominho, J., Olivella, M. A., Fiol, N., Villaescusa, I., & Pereira, H. (2013). The chemical composition of exhausted coffee waste. Industrial Crops and Products, 50, 423-429. https://doi.org/10.1016/j.indcrop.2013.07.056

Rambo, M. K. D., Schmidt, F. L., & Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 144, 696-703. http://dx.doi.org/10.1016/j.talanta.2015.06.045

Rawat, M., & Bulasara, V. K. (2018). Synthesis and characterization of low-cost ceramic membranes from fly ash and kaolin for humic acid separation. Korean Journal of Chemical Engineering, 35, 725-733. https://doi.org/10.1007/s11814-017-0316-6

Saberian, M., Li, J., Donnoli, A., Bonderenko, E., Oliva, P., Gill, B., Lockrey, S., & Siddique, R. (2021). Recycling of spent coffee grounds in construction materials: A review, Journal of Cleaner Production, 289, 125837. https://doi.org/10.1016/j.jclepro.2021.125837

Saini, P., Bulasara, V. K., & Reddy, A. S. (2019). Performance of a new ceramic microfiltration membrane based on kaolin in textile industry wastewater treatment. Chemical Engineering Communications, 206(2), 227-236. https://doi.org/10.1080/00986445.2018.1482281

Santos, P. S. (1989). Clays Science and Technology. v. 1, (2nd ed.), Edgard Blücher Ltda, São Paulo.

Soares, L. S., Moris, V. A. S., Yamaji, F. M., & Paiva, J. M. F. (2015). Use of waste coffee grounds and sawdust in briquettes molding and evaluation of properties. Revista Matéria, 20(2), 550–560. https://doi.org/10.1590/S1517-707620150002.0055

Downloads

Published

07/02/2023

How to Cite

MACIEL, F. S. .; AREIAS, I. O. R. .; HOLANDA, J. N. F. de . Valorization potential of coffee grounds waste as a renewable pore-forming agent to produce low-cost porous ceramic support. Research, Society and Development, [S. l.], v. 12, n. 2, p. e22612240023, 2023. DOI: 10.33448/rsd-v12i2.40023. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40023. Acesso em: 13 nov. 2024.

Issue

Section

Engineerings