POST-COVID-19: Persistent symptoms and relationship to the level of fatigue
DOI:
https://doi.org/10.33448/rsd-v12i2.40235Keywords:
COVID-19; Signs and symptoms; Fatigue.Abstract
Persistent post-COVID-19 symptoms appear similar to other post-infectious fatigue syndromes, particularly when persistent beyond six months. Therefore, the aim of the study was to evaluate persistent symptoms and their relationship with the level of fatigue, especially above six months post-COVID-19. The individuals were invited by social networks and the questionnaire was made available through an online link using the Google Forms platform. The informed consent was made available on the first page of the form and then the individuals answered the questionnaire on persistent symptoms and level of fatigue using the FACIT-F scale. The Mann Whitney test was used to compare FACIT-F scores between individuals with and without post-COVID-19 symptoms for both the total group and those who continued to have symptoms after 6 months of COVID-19. After data collection, it was observed that the most reported symptoms were: hair loss (43%), forgetfulness/memory loss (30.6%), sweating (23.8%), muscle weakness (21.2% ), dyspnea (20.2%), headache (16.6%), trouble sleeping (15%), confusion or lack of concentration (14%), dry cough (12.4%), pain or swelling in the joints (11.9%), changes in smell and taste (11.9%), persistent muscle pain and palpitations (11.4%). The level of fatigue was higher for those with symptoms. Thus, it is concluded that there was heterogeneity in the prevalence of symptoms, but those with symptoms showed a higher level of fatigue, especially after six months post-COVID-19.
References
Ahmed, H., Patel, K., Greenwood, D. C., et al. (2020). Long term clinical outcomes in survivors of severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS) coronavirus out breaks alter hospitalization or ICU admission: A systematic review and meta-analysis. Journal of Rehabilitation Medicine, May 31;52(5):jrm00063. 10.2340/16501977-2694.
Alkodaymi, M. S., Omrani, O. A., Fawzy, N. A., et al. (2022). Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis. Clinical Microbiology and Infection, May;28(5):657-666. 10.1016/j.cmi.2022.01.014.
Alzueta, E., Perrin, P.B., Yuksel, D., et al. (2022). An international study of post-COVID sleep health. Sleep Health, 8(6):684-690. 10.1016/j.sleh.2022.06.011.
Baig, A. M. (2020). Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neuroscience & Therapeutics, May;26(5):499-501. 10.1111/cns.13372.
Carfì, A., et al. (2020). Persistent Symptoms in Patients After Acute COVID-19. Journal of the American Medical Association, 324(6):603-605.10.1001/jama.2020.12603.
Cella, D., Yount, S., Sorensen, M., Chartash, E., Sengupta, N., & Grober, J. (2005). Validation of the functional assessment of chronic illness therapy fatigue scale relative to other instrumentation in patients with rheumatoid arthritis. Journal of Rheumatology, May;32(5):811-9. PMID: 15868614.
Chen, N., Zhou, M., Dong, X., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. Feb 15;395(10223):507-513. 10.1016/S0140-6736(20)30211-7.
Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; Board on the Health of Select Populations; Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. Washington (DC): National Academies Press (US); 2015 Feb 10.
Disser, N. P., De Micheli, A. J., Schonk, M. M., et al. (2020). Musculoskeletal Consequences of COVID-19. Journal of bone and joint surgery. American volume, Jul 15;102(14):1197-1204. 10.2106/JBJS.20.00847.
Fernández-de-Las-Peñas, C., Palacios-Ceña, D., Gómez-Mayordomo, V., et al. (2021). Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. European Journal of Internal Medicine, Oct;92:55-70. 10.1016/j.ejim.2021.06.009.
Garrigues, E., Janvier, P., Kherabi, Y., et al. (2020). Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. Journal of Infection, Dec;81(6):e4-e6. 10.1016/j.jinf.2020.08.029.
González-Hermosillo, J. A., Martínez-López, J. P., Carrillo-Lampón, S. A., et al. (2021). Post-Acute COVID-19 Symptoms, a Potential Link with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A 6-Month Survey in a Mexican Cohort. Brain Sciences, Jun 8;11(6):760. 10.3390/brainsci11060760.
Greenhalgh, T., et al. (2020). Management of post-acute covid-19 in primary care. British Medical Journal, 370:m3026. 10.1136/bmj.m3026.
Hayes. L. D., Ingram, J., & Sculthorpe, N. F. (2021). More Than 100 Persistent Symptoms of SARS-CoV-2 (Long COVID): A Scoping Review. Frontiers in Medicine (Lausanne), Nov 1;8:750378. 10.3389/fmed.2021.750378
Hickie, I., Davenport, T., Wakefield, D., et al. (2006). Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. British Medical Journal, 16;333(7568):575. 10.1136/bmj.38933.585764.AE.
Huang, C., et al. (2021). 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet, 397: 220–32.10.1016/ S0140-6736(20)32656-8.
Huang, C., Wang, Y., Li, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, Feb 15;395(10223):497-506.10.1016/S0140-6736(20)30183-5.
Joli, J., Buck, P., Zipfel, S., & Stengel, A. (2022). Post-COVID-19 fatigue: A systematic review. Frontiers in Psychiatry, Aug 11;13:947973. 10.3389/fpsyt.2022.947973.
Komaroff, A. L., & Bateman, L. (2021). Will COVID-19 Lead to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome? Frontiers in Medicine, Jan 18;7:606824. 10.3389/fmed.2020.606824.
Komaroff, A. L., & Lipkin, W. I. (2021). Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends in Molecular Medicine, 27(9): 895-906.10.1016/j.molmed.2021.06.002.
Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C., et al. (2021). More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. Scientific Reports, 11, 16144. https://doi.org/10.1038/s41598-021-95565-8
Lu, R., Zhao, X., Li, J., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, Feb 22;395(10224):565-74. doi.org/10.1016/S0140-6736(20)30251-8.
Mandal, S., Barnett, J., Brill, S. E., et al. (2021). 'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax, Apr;76(4):396-398. 10.1136/thoraxjnl-2020-215818.
Mao, L., Jin, H., Wang, M., et al. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology, 77(6):683-690.10.1001/jamaneurol.2020.1127
Moreno-Pérez, O., Merino, E., Leon-Ramirez, J. M., et al. (2021). Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. Journal of Infection, Mar;82(3):378-383. 10.1016/j.jinf.2021.01.004.
Nalbandian, A., Sehgal, K., Gupta, A., et al. (2021). Post-acute COVID-19 syndrome. Nature Medicine, Apr;27(4):601-615. doi.org/10.1038/s41591-021-01283-z.
Nehme, M., Braillard, O., Chappuis, F., Courvoisier, D. S., & Guessous, I. T. (2021). Prevalence of symptoms more than seven months after diagnosis of symptomatic COVID-19 in an outpatient setting. Annals of Internal Medicine, Sep;174(9):1252-1260. 10.7326/M21-0878.
Nieman, D. C. (2021). Exercise Is Medicine for Immune Function: Implication for COVID-19. Current Sports Medicine Reports, Aug 1;20(8):395-401. 10.1249/JSR.0000000000000867.
Niklassen, A. S., Draf, J., Huart, C., et al. (2021). COVID-19: Recovery from Chemosensory Dysfunction. A Multicentre study on Smell and Taste. Laryngoscope, May;131(5):1095-1100. 10.1002/lary.29383.
Poenaru, S., Abdallah, S.J., Corrales-Medina, V., & Cowan, J. (2021). COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review. Therapeutic Advances in Infectious Disease, Apr 20;8:20499361211009385. 10.1177/20499361211009385.
Ren, L. L., Wang, Y. M., Wu, Z. Q., et al. (2020). Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal, May 5;133(9):1015-24. 10.1097/CM9.0000000000000722.
Rudroff, T., Fietsam, A. C., Deters, J. R., Bryant, A. D., & Kamholz, J. (2020). Post-COVID-19 Fatigue: Potential Contributing Factors. Brain Sciences, Dec 19;10(12):1012. 10.3390/brainsci10121012.
Silva, R. N., Goulart, C. D. L., Oliveira, M. R., et al. (2021). Cardiorespiratory and skeletal muscle damage due to COVID-19: making the urgent case for rehabilitation. Expert Review of Respiratory Medicine, Sep;15(9):1107-1120. 10.1080/17476348.2021.1893169.
Spruit, M. A., et al. (2020). COVID-19: interim guidance on rehabilitation in the hospital and post-hospital phase from a European Respiratory Society- and American Thoracic Society-coordinated international task force. European Respiratory Journal, Dec; 56(6): 2002197. 10.1183/13993003.02197-2020.
Taboada, M., Moreno, E., Cariñena, A., et al. (2021). Quality of life, functional status, and persistent symptoms after intensive care of COVID-19 patients. British Journal of Anaesthesia, Mar;126(3):e110-e113. 10.1016/j.bja.2020.12.002.
Townsend, L., Dyer, A. H., Jones, K., et al. (2020). Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLOS ONE, Nov 9;15(11):e0240784. 10.1371/journal.pone.0240784.
Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J., & Prescott, H. C. (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). Journal of the American Medical Association, Aug 25;324(8):782-793. 10.1001/jama.2020.12839.
Wong, T. L., & Weitzer, D. J. (2021). Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)-A Systemic Review and Comparison of Clinical Presentation and Symptomatology. Medicine (Kaunas), Apr 26;57(5):418. 10.3390/medicina57050418.
Woo, M. S., Malsy, J., Pöttgen, J., et al. (2020). Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Communications, Nov 23;2(2):fcaa205. 10.1093/braincomms/fcaa205.
Wu, F., Zhao, S., Yu, B., et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579, 265–269. 10.1038/s41586-020-2008-3.
Xiong, Q., Xu, M., Li, J., et al. (2021). Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clinical Microbiology and Infection, Jan;27(1):89-95. 10.1016/j.cmi.2020.09.023.
Yiying Huang, Y., Cuiyan Tan, C., Jian Wu, J., et al. (2020). Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respiratory Research, Jun 29;21(1):163. 10.1186/s12931-020-01429-6.
Zhu, N., Zhang, D., Wang, W., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, Feb 20;382(8):727-33. 10.1056/NEJMoa2001017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Luciana Sanae Ota; Ayuri Pinotti Nakamatsu; Érica Oliveira Alves; Giovanna Galvão Pocay Fré; Iara Buriola Trevisan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.