Streptomyces hygroscopicus oil extract with activities against Aedes aegypti

Authors

DOI:

https://doi.org/10.33448/rsd-v12i3.40490

Keywords:

Bioinsecticide; Gas chromatography; Secondary metabolites.

Abstract

The arboviruses transmitted by the female Aedes aegypti are considered a public health problem and the vector control is essential to reduce the spread of disease-causing pathogens. The main objective of this research was to investigate the chemical composition of the Streptomyces hygroscopicus biomass extract and its larvicidal capabilities against the Aedes aegypti mosquito. Regarding the result of the prospection of the chemical composition of the extract, based on the qualitative colorimetric methodology of the presence of secondary metabolites, there was a positive indication for the alkaloid test and a negative one for flavonoids. Through Gas Chromatography coupled to mass spectrometry it was possible to infer the presence of 9-12-octadecadienoic acid followed by the presence of 9-12-octadecadienoic acid and linoleic acid. The larvicidal activity against Ae. aegypti (LC50) of the extract diluted with 1% DMSO was 155.4 ppm, the highest mortality was with 250ppm reaching 100 porcent. Finally, it was seen that the oily extract of S. hygroscopicus biomass was able to act on Ae. aegypti, showing as a potential larvicidal for this species.

References

Achee, N. Grieco, J. P., Vatandoost, H. Seixas, G., Pinto, J. Ching-NG, L., Martins. & Vontas, J. (2019). Alternative strategies for mosquito-borne arbovirus control. PLOS Neglected Tropical Diseases, 13(1), 1-22. doi: https://doi.org/10.1371/journal.pntd.0006822

Amelia-Yap, Z, H., Azman, A, S., AbuBakar, S., & Low, V. L. Streptomyces derivatives as an insecticide: Current perspectives, challenges and future research needs for mosquito control, Acta Tropica, 229, 2022. https://doi.org/10.1016/j.actatropica.2022.106381.

Bergamo, P., Luongo, D., Miyamoto, J., Cocca, E.; Kishino, S., Ogawa, J., Tanabe, S., & Rossi, M. (2014). Immunomodulatory activity of a gut microbial metabolite of dietary linoleicvacid, 10-hydroxy-cis-12-octadecenoicvacid, associated with improved antioxidant/detoxify. Journal of Functional Foods, 11, 192-202. https://doi.org/10.1016/j.jff.2014.10.007

Bilyk, O., & Luzhetskyy, A. (2016) Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol, 42(1), 98-107. 10.1016/j.copbio.2016.03.008.

Brasil - Ministério da Saúde. (2016). Dengue: diagnóstico e manejo clínico: adulto e criança. Brasil: Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis.

Consoli, R. A. G. B., & Oliveira, R. L. (1994). Principais mosquitos de importância sanitária no Brasil (Vol. 1). Fiocruz.

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642. 10.1007/s00253-009-2355-3

Forattini, O. P. (2002). Culicidologia Médica (Vol 1). Universidade de São Paulo.

Farouil, L., Duchaudé, Y., Zozo, L., Sylvestre, M., Lafay, F., Marote, P., & Cebrian-Torrejon, G. Cyclic voltammetry of immobilized particles as an alternative pesticide screening method for Aedes aegypti mosquitoes. J Solid State Electrochem, 2023. doi: https://doi.org/10.1007/s10008-023-05398-w

Ganesan, P., Andand, S., Sivanandhan, S., David, R. H. A., Paulraj, M. G., Al-Dhabi, N. A., & Ignacimuthu, S. Larvicidal, ovicidal and repellent activities of Streptomyces enissocaesilis (S12–17) isolated from Western Ghats of Tamil Nadu India. J. Entomol. Zool. Stud, 6(2), 1828–1835, 2018.

Hwang, K. S., Kim, H. U., Charusanti, P., Palsson, B., & Lee, S. Y. (2014). Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances, 32(2), 255–268. https://doi.org/10.1016/j.biotechadv.2013.10.008

Jaivel, N., Uvarani, C., Rajesh, R., Velmurugan, D., & Marimuthu, P. (2014). Natural occurrence of organofluorine and other constituents from Streptomyces sp. TC1. J Nat Prod, 77(1), 2-8. https://doi.org/10.1021/np400360h

Janaki, T. (2016). Larvicidal activity of Streptomyces cacaoi subsp. cacaoi-M20 against Aedes aegypti. International Journal of Botany Studies, 1(2), 47-49.

Kishimoto, S., Sato, M., Tsunematsu, Y., & Watanabe, K. (2016). Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids. Molecules, 21(8), 1078. https://doi.org/10.3390/molecules21081078

Lopez, S. B. G., Ribeiro, V. G., Rodriguez., J. V., Dorand, F. A. P. S., Salles, T. A; Guimarães, T. S., Alvarenga, E. S. L., Melo, A. C. A., Almeida, R. V., & Moreira, M. F. RNAi-based bioinsecticide for Aedes mosquito control. Sci. Rep, 9, 1-13, 2019. https://doi.org/10.1038/s41598-019-39666-5

Masi, M., Cala, A. Tabanca, N., Cimmino, A., Grenn, I. R., Bloomquist, J. R., Macias, F. A., & Evidente, A. (2016). Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)- Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis. Nature proceding, 21(11). 10.3390/molecules21111432

Melo, A. R., Garcia, I. J., Serrão, J. E., Santos, H. L., Lima, L. A. R. S., & Alves, S. (2018). N.Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicology and Environmental Safety, 154(1), 1-5. 10.1016/j.ecoenv.2018.02.009.

Naine, J., & Devi, S. C. (2014). Larvicidal and Repellent Properties of Streptomyces sp. VITJS4 Crude Extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Polish jornal of microbiology, 63(3), 341-348. 10.22073/pjm-2014-045

Rottig, A., Atasayar, E. J. P., Sproer, C. Schumann, P., Schauer, J., & Steinbuchel, A. (2017). Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil. International Journal of Systematic and Evolutionary Microbiology, 67(6), 1676-1682. 10.1099/ijsem.0.001839

Samy, R. P., & Chow, V. T. K. (2011) Antimicrobial and Phytochemical Analysis of Centella asiatica (L.) R. Nature proceding, 1. hdl:10101/npre.2011.6033

Sayed, A. M., Hassan, M. H. A., Alhadrami, H. A., Hassan, H. M., Goodfellow, M., & Rateb, M. E. Extreme environments: microbiology leading to specialized metabolites. J. Appl. Microbiol, 128(3), 630-657, 2019. https://doi.org/10.1111/jam.14386

Silva, R. M. F., Ribeiro, J. F. A., Freitas, M. C. C., Arruda, M. S. P., Nascimento, M. N., Barbosa, W. L. R., & Rolim Neto, P. J. (2013). Caracterização físico-química e análises por espectrofotometria e cromatografia de Peperomia pellucida L. (H. B. K.). Rev. Bras. Pl. Med, 15(4), 717-726. https://doi.org/10.1590/S1516-05722013000500012

Sivakala, K. K., Gutiérrez-García, K., Jose, P. A., Thinesh, T., Anandham, R., Barona-Gómez, F., & Sivakumar, N. Desert environments facilitate unique evolution of biosynthetic potential in Streptomyces. Molecules, 26(3), 588, 2021. https://doi.org/10.3390/molecules26030588.

Tan, L. T., Ser, H. L. Yin, W. F., Chan, K. G. Lee, L. H., & Goh, B. H. (2015). Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Front. Microbiol, 6, 1316. https://doi.org/10.3389

Wagner, H. (1996). Plant Drug Analysis: A Thin Layer Chromatography (2a ed.). Springer.

World Health Organization – WHO. (2005). Guidelines for laboratory and field testing of mosquito larvicides (pp. 1-41).

WHO. (2012). Handbook for integrated vector management. Geneva: World Health Organization.

Published

06/03/2023

How to Cite

OLIVEIRA, J. F. de .; RIQUE, H. L. .; NUNES, F. da C. .; SILVA, L. A. de O. da . Streptomyces hygroscopicus oil extract with activities against Aedes aegypti . Research, Society and Development, [S. l.], v. 12, n. 3, p. e17412340490, 2023. DOI: 10.33448/rsd-v12i3.40490. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40490. Acesso em: 11 sep. 2024.

Issue

Section

Agrarian and Biological Sciences