Enhanced geranylgeraniol stability and dissolution from self-emulsifying pellets containing the sucupira (Pterodon emarginatus Vogel) standardized extract

Authors

DOI:

https://doi.org/10.33448/rsd-v12i4.41314

Keywords:

Bioproducts; Phytopharmaceutical technology; Medicinal plants; SEDDS.

Abstract

The vegetal species sucupira (Pterodon emarginatus Vogel) presents some diterpenes that have anti-inflammatory activities. However, diterpenes are poorly water-soluble compounds. The development of Self-Emulsifying Drug Delivery Systems (SEDDS) allows for obtaining a solid dosage form that maximizes the release of P. emarginatus constituents in an aqueous medium. This work aimed to obtain and characterize pellets containing the SEDDS prepared from P. emarginatus extract using the extrusion-spheronization technique. Formulations PF1 to PF6 were tested. Then, self-emulsifying formulations were prepared (SES1 to SES5) based on the mixture of poloxamer 188 (Pluronic® F-68) and sorbitan triolate (Span®85) with P. emarginatus extract. Next, formulation PF6, containing microcrystalline cellulose: P. emargitus extract: aerosil®200: polyvinylpyrrolindone K-30 (50: 54.25: 4: 4) was used in the preparation of pellets containing the self-emulsifying systems. These pellets had a homogeneous surface and average sphericity of 0.52. When encapsulated in hard gelatin capsules, it was noted that the formulations PF6, PSES3 and PSES4 were statistically different from each other at the 5% level. In the first 10 min of dissolution, PSES3 and PSES4 showed a higher level of geranylgeraniol released compared to the PF6 (p=0.000117). However, after 20 min of dissolution, no significant difference was observed in relation to the content of this compound. In the accelerated stability study, the average content of the geranylgeraniol was 85.6% and 81.8% for PSES3 and PSES4, respectively, whereas it was only 34.4% for PF6. Under the studied conditions, obtaining the self-emulsifying systems made it possible to achieve the desired dissolution and chemical stability of geranylgeraniol.

References

Alves, S. F., Borges, L. L., Santos, T. O., Paula, J. R., Conceiçao, E. C. & Bara, M. T. F. (2014). Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum arabic and maltodextrin as wall materials: composition and stability. Dry Technol., 32 (1), 96-105. https://doi.org/10.1080/07373937.2013.816315

Alves, S. F., Gomes, C. M., Oliveira, M. G., Andrade, W. M., Moreira, L. C., Borges, L. L., Silva, V. B., Valadares, M. C. & Bara, M. T. F. (2020). Cytotoxicity, phagocytic activity, and leishmanicidal potential of extract standardized in geranylgeraniol obtained from the fruit of Pterodon emarginatus Vogel. Pharmacogn. Mag., 16 (67), 140-147. https://doi.org/10.4103/pm.pm_231_19

Abdalla, A., Klein, S. & Mäder, K. (2008). A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: Characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur. J. Pharm. Sci., 35 (5), 457-464. https://doi.org/10.1016/j.ejps.2008.09.006

Beringhs, A. O., Souza, F. M., Campos, A. M., Ferraz, H. G. & Sonaglio, D. (2013). Technological development of Cecropia glaziovi extract pellets by extrusion-spheronization. Braz. J. Pharmacogn., 23 (1), 160-168. https://doi.org/10.1590/S0102-695X2012005000123

Bhaskaran, S. & Lakshmi, P. K. (2010). Extrusion Spheronization - A review. Int. J. Pharm. Technol. Res., 2 (4), 2429-2433.

Brazil, Brazilian Pharmacopoeia, (2010). vol.1. (5a ed.), Anvisa, 548p.

Brazil, Guia para realização de estudos de estabilidade, RE nº 01 de 29 de julho de 2005. Anvisa

Calixto, J. B. (2019). The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 91(3), 2-7. https://doi.org/10.1590/0001-3765201920190105

Cazo, N. A., Filho, E. R. P., Silva, M. F. G. F., Fernandes, J. B., Vieira, P. C., Puhl, A. C., Polikarpovb, I. & Forima, M. R. (2012). Nanopartículas de poli-ε-caprolactona carregadas com hidrocortisona: preparação usando planejamento fatorial e sua avaliação. Orbital: Electron. J. Chem., 4 (2), 54-76.

Clarke, A. P., Booth, S. W., Petersson, J., Podczeck, F. & Newton, J. M. (2000). Pellet formulations containing self-emulsifying systems. Am. Assoc. Pharm. Sci., 31, 589-596.

Dash, R. N., Habibuddin, M., Humaira, T. & Ramesh, D. (2015). Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Sauid Pharm. J., 23 (5), 528-540. https://doi.org/10.1016/j.jsps.2015.01.024

De Omena, M. C., Bento, E. S., Paula, J. E. & Santana, A. E. G. (2006). Larvicidal diterpenes from Pterodon polygalaeflorus. Vector Borne Zoonotic Dis., 6 (2), 216-222. https://doi.org/10.1089/vbz.2006.6.216

Garcia, S. A. S., Rocha, P. B. R., Souza, B. S., Paz, A. T. S., Negris, A. L. C., Marreto, R. N., Conceição, E. C., Bara, M. T. F. & Taveira, S. F. (2022). Enhanced skin permeation of punicalagin after topical application of pluronic micelles or vesicles loaded with Lafoensia pacari extract. Planta Med. 88 (6), 479-488. https://doi.org/10.1055/a-1464-1525

Goes, P. R. N., Hoscheid, J., Silva-Filho, S. E., Froehlich, D. L., Pelegrini, B. L., Canoff, J. R. A., Lima, M. M. S., Cuman, R. K. N. & Cardoso, M. L. C. (2020). Rheological behavior and antiarthritic activity of Pterodon pubescens nanoemulsion. Res. Soc. Dev., 9 (10), e179108119. https://doi.org/10.33448/rsd-v9i10.8119

Hoscheid, J., Outuki, P. M., Kleinubing, S. A., Silva, M. F., Bruschi, M. L. & Cardoso, M. L. C. (2015). Development and characterization of Pterodon pubescens oil nanoemul-sions as a possible delivery system for the treatment of rheumatoid arthritis. Colloids Surf. A, 484 (1), 19-27. https://doi.org/10.1016/j.bjp.2016.08.012

Kawakami, M. Y. M., Zamora , L. O., Araújo, R. S., Fernandes , C. P., Ricotta, T. Q. N., Oliveira, L. G., Queiroz-Junior , C. M., Fernandes , A. P., Conceição , E. C., Ferreira , L. A. M., Barros , A. L. B., Aguiar, M. G. & Oliveira, A. E. M. F. (2021). Eficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed. Pharmacother., 134 (111109), 1-12. https://doi.org/10.1016/j.biopha.2020.111109

Krstic, M. Z., Razic, S. S., Djekic, L. M., Dobricic, V. D., Momcilovic, M. A., Vasiljevic, D. D. & Ibric, S. R. (2015). Application of a mixture experimental design in the optimization of the formulation of solid self-emulsifying drug delivery systems containing carbamazepine. Lat. Am. J. Pharm., 34 (5), 885-894.

Lemos, J. A., Oliveira, A. E. M. F. M., Araujo, R. S., Townsend, D. M., Ferreira, L. A. M. & Barros, A. L. B. (2021). Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed. Pharmacother., 143 (112137), 1-14. https://doi.org/10.1016/j.biopha.2021.112137

Lorenzi, H. & Matos, F. J. A. (2021). Plantas medicinais no Brasil: nativas e exóticas. 3. ed. Nova Odessa-SP, Jardim Botânico Plantarum, 576p.

Menna-Barreto, R. F. S., Laranja, G. A. T., Silva, M. C. C., Coelho, M. G. P., Paes, M. C., Oliveira, M. M. & CASTRO, S. L. (2008). Anti-Trypanossoma cruzi activity of Pterodon pubescens seed oil: geranylgeraniol as the major bioactive component. Parasitol. Res., 103 (1), 111-117. https://doi.org/10.1007/s00436-008-0937-0.

Noory, C., Nhan, T., Ouderkirk, L. & Shah, V. (2000). Steps for development of a dissolution test for sparingly water-soluble drug products. Dissolution Technol., 7 (1), 16-18. https://doi.org/10.14227/DT070100P16

Oliveira, A. E. M. F. M., Duarte, J. L., Amado, J. R. R., Cruz, R. A. S., Rocha, C. F., Souto, R. N. P., Ferreira, R. M. A., Santos, K., Conceição, E. C., Oliveira, L. A. R., Kelecom, A., Fernandes, C. P. & Carvalho, J. C. T. (2016). Development of a larvicidal nanoemulsion with Pterodon emarginatus Vogel oil. Plos One, 11 (1), 1-16. https://doi.org/10.1371/journal.pone.0145835

Oliveira, L. A. R. (2014). Isolamento, quantificação e avaliação das atividades leishmanicida e tripanocida de furanoditerpenos do óleo-resina de Pterodon spp. Vogel (Fabaceae). (Master's Thesis). Dissertation, Universidade Federal de Goiás.

Oliveira, L. A. R., Oliveira, G. A. R., Borges, L. L., Bara, M. T. F. & SILVEIRA, D. (2017). Vouacapane diterpenoids isolated from Pterodon and their biological activities. Braz. J. Pharmacogn., 27 (5), 663-672. https://doi.org/10.1016/j.bjp.2017.05.014

Oliveira, L. A. R., Silva, A. C. G., Thomaz, D. V., Brandão, F., Conceição, E. C., Valadares, M. C., Bara, M. T. F. & Silveira D. (2023). The potential of vouacapanes from Pterodon emarginatus Vogel against COVID-19 cytokine storm. Adv. Pharm. Bull., 13 (1), 150-159. https://doi.org/10.34172/apb.2023.016

Pascoa, H., Diniz, D. G. A., Florentino, I. F., Costa, E. A. & Bara, M. T. F. (2015). Microemulsion based on Pterodon emarginatus oil and its anti-inflamatory potential. Braz. J. Pharm. Sci., 51 (1), 118-126. https://doi.org/10.1590/S1984-82502015000100013

Rabisková, M., Bautzová, T., Gajdziok, J., Dvořáčková, K., Lamprecht, A., Pellequer, Y. & Spilková, J. (2012). Coated chitosan pellets containing rutin intended for the treatment of inflammatory bowel disease: in vitro characteristics and in vivo evaluation. Int. J. Pharm., 422 (1-2), 151-159. https://doi.org/10.1016/j.ijpharm.2011.10.045

Silva, E. 0., Marreto, R. N., Conceição, E. C. & Bara, M. T. F. (2021). Preparation of pellets containing a standardized Artemisia annua L. extract by extrusion-spheronization. Rev. Fitos, 15 (1), 84-92.

Silva Filho, O. P., Oliveira, L. A. R., Martins, F. S., Borges, L. L., Freitas, O. & Conceição, E. C. (2015). Obtainment of pellets using the standardized liquid extract of Brosimum gaudichaudii Trécul (Moraceae). Pharmacogn. Mag., 11 (41), 170-175. https://doi.org/10.4103/0973-1296.149734

Spindola, H. M., Servat, L., Denny, C., Rodrigues, R. A. F., Eberlin, M. N., Cabral, E., Souza, I. M. O., Tamashiro, J. Y., Carvalho, J. E. & Foglio, M. A. (2010). Antinociceptive effect of geranylgeraniol and 6α,7β-dihydroxyvouacapan-17β-oate methyl ester isolated from Pterodon pubescens Benth. BMC Pharmacol., 10 (1), 1-10. https://doi.org/10.1186/1471-2210-10-1

Spindola, H. M., Servat, L., Rodrigues, R. A. F., Sousa, I. M. O., Carvalho, J. E. & Foglio, M. A. (2011). Geranylgeraniol and 6α,7β-dihydroxyvouacapan-17β-oate methyl ester isolated from Pterodon pubescens Benth.: further investigation on the antinociceptive mechanisms of action. Eur. J. Pharmacol., 656 (1-3), 45-51. https://doi.org/10.1016/j.ejphar.2011.01.025

Tang, B., Cheng, G., Gu, J. C., Xu, C. H. (2008). Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov. Today, 13 (13-14), 606-612. https://doi.org/10.1016/j.drudis.2008.04.006

Trindade, J. R., Ferreira, O. O., Sobrinho, A. C. G., Rodrigues, C. A., Albuquerque, K. C. O., Nascimento, L. D., Aguiar, E. H. A., Gurgel, E. S. C. & Santos,

J. U. M. (2022). Chemical composition of volatile compounds in flowers and leaves of Senna reticulata (Leguminosae) from the Eastern Amazonia. Research, Society and Development, 11(3), e9711326216. https://doi.org/10.33448/rsd-v11i3.26216

Tuleu, C., Newton, M., Rose, J., Euler, D., Saklatvala, R., Clarke, A. & Booth, S. (2004). Comparative bioavailability study in dogs of a self-emulsifying formulation of progesterone presented in a pellet and liquid form compared with an aqueous suspension of progesterone. J. Pharm. Sci., 93 (6), 1495-1502. https://doi.org/10.1002/jps.20068

Vasanthavada, M. & Serajuddin, A. T. M. (2007). Lipid-based self-emulsifying solid dispersions. In: Hauss, D.J. (ed.). Oral lipid-based formulations: enhancing bioavailability of poorly water-soluble drugs. pp. 149-184. Boca Raton: CRC Press.

Vieira, R., Severino, P., Nalone, L. A., Souto, S. B., Silva, A. M., Lucarini, M., Durazzo, A., Santini, A. & Souto, E. B. (2020). Sucupira oil-loaded nanostructured lipid carriers (NLC): lipid screening, factorial design, release profile, and cytotoxicity. Molecules, 25 (3), 685-707. https://doi.org/10.3390/molecules25030685

Zamora, L. O., Bezerra, D. C., Oliveira, H. N. S., Duarte, J. L., Guisado-Bourzac, F., Chil-Núnez, I., Conceiçao, E.C., Barroso, A., Mourao, R. H. V., Oliveira, A. E. M. F. M., Cruz, R. A. S., Carvalho, J. C. T., Solans, C. & Fernandes, C. P. (2020). Preparation of non-toxic nano-emulsions based on a classical and promising Brazilian plant species through a low-energy concept. Ind. Crop. Prod. 158, 112989. https://doi.org/10.1016/j.indcrop.2020.112989

Zhang, L., Chang, J. H., Zhang, B. Q., Liu, X. G., Liu, P., Xue, H. F., Liu, L.Y., Fu, Q., Zhu, M. & Liu, C. Z. (2015). The pharmacokinetic study on the mechanism of toxicity attenuation of rhubarb total free anthraquinone oral colon-specific drug delivery system. Fitoterapia, 104 (5), 86-96. https://doi.org/10.1016/j.fitote.2015.05.018

Zhao, F., Vyacheslav, M., Venkatramana, R. & Hussain, M. (2004). Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells. Pharm. Res., 21 (1), 144-148. https://doi.org/10.1023/b:pham.0000012162.52419.b3

Downloads

Published

18/04/2023

How to Cite

ALVES, S. F. .; MARRETO, R. N. .; BARA, M. T. F. . Enhanced geranylgeraniol stability and dissolution from self-emulsifying pellets containing the sucupira (Pterodon emarginatus Vogel) standardized extract . Research, Society and Development, [S. l.], v. 12, n. 4, p. e26012441314, 2023. DOI: 10.33448/rsd-v12i4.41314. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41314. Acesso em: 29 may. 2024.

Issue

Section

Health Sciences