Biometric responses of sorghum and mung bean plants exposed to isolated and combined salinity and aluminum stresses

Authors

DOI:

https://doi.org/10.33448/rsd-v12i5.41341

Keywords:

Stress; Plants; Salinity; Aluminum.

Abstract

Abiotic stresses induce changes in growth and loss of productivity in plant species. The present study aimed to evaluate the responses of mung bean and sorghum plants subjected to salt stress (0, 50 and 150 mM of NaCl) and aluminum (0 and 1.0 µM of Al) alone or in combination with base in the measurement of absolute growth rate, plant height, fresh mass of shoots and roots and root length. It was observed that the sorghum plants showed higher values of absolute growth rate and plant height in relation to mung bean, with the other parameters being similar between the two cultures. Salinity and aluminum stress induced negative effects when applied alone or combined in all variables analyzed for the two cultures tested. The combination of 150 mM NaCl and 1.0 µM Al did not affect the plant height, fresh mass and length of roots of sorghum plants compared to that observed in plants stressed with only 150 mM NaCl. Root length of mung bean plants stressed with 1.0 µM Al was statistically similar to that observed in plants simultaneously exposed to 50 mM NaCl and 1.0 µM Al. Sorghum plants showed better responses to saline and aluminum stress than mung bean plants, possibly due to the C4 metabolism present in these plants, which allows greater CO2 uptake and biomass accumulation.

References

Ali, B. (2017). Salicylic acid induced antioxidant system enhances the tolerance to aluminium in mung bean (Vigna radiata L. Wilczek) plants. Indian Journal of Plant Physiology, 22, 178-189.

Bonifacio, A., Carvalho, F. E., Martins, M. O., Neto, M. C. L., Cunha, J. R., Ribeiro, C. W., Margis-Pinheiro, M., & Silveira, J. A. (2016). Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase. Journal of Plant Physiology, 201, 17-27.

Braga, F. M., Ferreira, E. A., Cabral, C. M., de Freitas, I. C., Maciel, J. C., Freitas, M. S. S., Aspiazu, I., Santos, J. B., Fernandes, L. A., Frazão, L. A., & Sampaio, R. A. (2021). Revisão: Crescimento de plantas C3 e C4 em resposta a diferentes concentrações de CO2. Research, Society and Development, 10(7), e33810716701-e33810716701.

Chen, L. S., Qi, Y. P., Jiang, H. X., Yang, L. T., & Yang, G. H. (2010). Photosynthesis and photoprotective systems of plants in response to aluminum toxicity. African Journal of Biotechnology, 9(54), 9237-9247.

CONAB (Companhia Nacional do Abastecimento). Safra: série histórica de grãos. https://portaldeinformacoes.conab.gov.br/safra-serie-historica-graos.html.

Coutinho, C. S., Rocha, E. S. N., Lopes, D. I. S., & Freire, A. I. (2022). Avaliação de crescimento de plântula de feijão Mungo-verde em diferentes substratos. Research, Society and Development, 11(7), e58611730675-e58611730675.

Ecco, M., Santiago, E. F., & Lima, P. R. (2014). Respostas biométricas em plantas jovens de cana-de-açúcar submetidas ao estresse hídrico e ao alumínio. Comunicata Scientiae, 5(1), 59-67.

Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, Article ID 756120

Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142.

Guimarães, M. J. M., Simões, W. L., Barros, J. R. A., Alberto, K. D. C., & Willadino, L. G. (2022). Parâmetros bioquímicos, fisiológicos e produtividade de sorgo granífero irrigado com água salina. Journal of Environmental Analysis and Progress, 7(3), 159-168.

Hernández, J. A. (2019). Salinity tolerance in plants: Trends and perspectives. International Journal of Molecular Sciences, 20(10), 2408.

Hoagland, D., & Arnon, D. I. (1950). The water culture method for growing plants without soil. California: Agriculture Experimental Station Circular.

Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, 80.

Mendes, J. B. S., Costa Neto, V. P., Sousa, C. D. A., Carvalho Filho, M. R., Rodrigues, A. C., & Bonifacio, A. (2020). Trichoderma and bradyrhizobia act synergistically and enhance the growth rate, biomass and photosynthetic pigments of cowpea (Vigna unguiculata) grown in controlled conditions. Symbiosis, 80, 133-143.

Moraes, N. J., Costa Neto, V. P., Araújo, A. S. F., Figueiredo, M. V. B., Bonifacio, A., & Rodrigues, A. C. (2016). Bradyrhizobium sp. inoculation ameliorates oxidative protection in cowpea subjected to long-term composted tannery sludge amendment. European Journal of Soil Biology, 76, 35-45.

Munns, R., Passioura, J. B., Colmer, T. D., & Byrt, C. S. (2020). Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, 225(3), 1091-1096.

Negrão, S., Schmöckel, S. M., & Tester, M. J. A. O. B. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11.

Noctor, G., Mhamdi, A., & Foyer, C. H. (2016). Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant, Cell & Environment, 39(5), 1140-1160.

Nunes-Nesi, A., Brito, D. S., Inostroza-Blancheteau, C., Fernie, A. R., & Araújo, W. L. (2014). The complex role of mitochondrial metabolism in plant aluminum resistance. Trends in Plant Science, 19(6), 399-407.

Rao, I. M., Miles, J. W., Beebe, S. E., & Horst, W. J. (2016). Root adaptations to soils with low fertility and aluminium toxicity. Annals of Botany, 118(4), 593-605.

Sarker, S. C., Ghosh, S. R., Hossain, M. J., Ghosh, R. C., Razia, S., Sushmoy, D. R., & Noor, M. M. A. (2019). Impact of aluminium (Al3+) stress on germination and seedling growth of five wheat genotypes. SAARC Journal of Agriculture, 17(1), 65-76.

Singh, S., Tripathi, D. K., Singh, S., Sharma, S., Dubey, N. K., Chauhan, D. K., & Vaculík, M. (2017). Toxicity of aluminium on various levels of plant cells and organism: a review. Environmental and Experimental Botany, 137, 177-193.

Published

25/04/2023

How to Cite

SILVA, M. E. C. da .; MELO, A. R. P. de .; SOUZA, C. C. da S. .; PEREIRA NETO, J. A. .; COSTA NETO, V. P. da .; LIMA, V. B. C. .; BONIFACIO, A. Biometric responses of sorghum and mung bean plants exposed to isolated and combined salinity and aluminum stresses. Research, Society and Development, [S. l.], v. 12, n. 5, p. e1812541341, 2023. DOI: 10.33448/rsd-v12i5.41341. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41341. Acesso em: 21 nov. 2024.

Issue

Section

Agrarian and Biological Sciences