Influence of Azospirillum brasilense on micro-propagated sugarcane seedlings

Authors

DOI:

https://doi.org/10.33448/rsd-v12i4.41354

Keywords:

Biofilm; Bio nutrition; Tissue culture; Rhizobacteria; Saccharum officinarum.

Abstract

Sugarcane is an essential crop in the Brazilian economy. The adoption of techniques in the acclimatization of plants in vitro contributes to success in the field. The present work aims to evaluate the effect of Azospirillum brasilense on the acclimatization of sugarcane seedlings. The experiment was conducted with six treatments and twelve replications. There were two control treatments without inoculation, one with N fertilization and one without, and four with A. brasilense (2.0x108 CFU) at different doses (19.92mL + N fertilization, 9.84mL, 19.92mL, and 39.84mL). Evaluations were seedling height (SH), stem diameter (SD), number of shoots per tube (NS), number of leaves (NL), fresh aerial weight (AFM), root fresh weight (RFM), total chlorophyll (TC), foliar nitrogen (FN) and visual microscopic study of the roots. The results showed that the recommended dose of A. brasilense + N fertilization increased by 36% in seedling height, 29% in stem diameter, 85% in aerial fresh mass, 21% in total chlorophyll, 142% in foliar N, and also increased root hairs and the presence of microbial biofilm. Therefore, the bacterium A. brasilense can be used in association with nitrogen fertilizers or alone, where it obtained great benefits in the increase of biomass.

References

Alina Martínez, R. (2020). Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system. Plant cell, tissue, and organ culture, v. 141(no. 2), pp. 447-453-2020 v.2141 no.2022. https://doi.org/10.1007/s11240-020-01800-x.

Almeida Neto, L. A., Guiselini, C., Menezes, D., Cordeiro Júnior, J. J. F., & Pandorfi, H. (2020). Growth of pre-sprouted sugarcane seedlings submitted to supplementary lighting. Revista Brasileira De Engenharia Agricola E Ambiental, 24.

Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z.-L., Li, Y.-R. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res, 53(1), 47. https://doi.org/10.1186/s40659-020-00312-4.

Boyko, A. S., Konnova, S. A., Fedonenko, Y. P., Zdorovenko, E. L., Smol’kina, O. N., Kachala, V. V., & Ignatov, V. V. (2011). Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55, isolated from the roots of Triticum durum. Microbiological Research, 166(7), 585-593. https://doi.org/https://doi.org/10.1016/j.micres.2011.01.002.

Cheavegatti-Gianotto, A., de Abreu, H. M., Arruda, P., Bespalhok Filho, J. C., Burnquist, W. L., Creste, S., César Ulian, E. (2011). Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil. Tropical Plant Biology, 4(1), 62-89. https://doi.org/10.1007/s12042-011-9068-3.

Ferreira, D. F. (2019). SISVAR: A COMPUTER ANALYSIS SYSTEM TO FIXED EFFECTS SPLIT PLOT TYPE DESIGNS: Sisvar. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450.

Filho, J. d. A. D., Calsa Júnior, T., Simões Neto, D. E., Souto, L. S., Souza, A. d. S., de Luna, R. G., da Costa, M. L. L. (2021). Genetic divergence for adaptability and stability in sugarcane: Proposal for a more accurate evaluation. Plos One, 16(7), e0254413. https://doi.org/10.1371/journal.pone.0254413.

Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1), 73. https://doi.org/10.1186/s13568-018-0608-1.

Galindo, F. S., da Silva, E. C., Pagliari, P. H., Fernandes, G. C., Rodrigues, W. L., Biagini, A. L. C., Teixeira Filho, M. C. M. (2021). Nitrogen recovery from fertilizer and use efficiency response to Bradyrhizobium sp. and Azospirillum brasilense combined with N rates in cowpea-wheat crop sequence. Applied Soil Ecology, 157, 103764. https://doi.org/https://doi.org/10.1016/j.apsoil.2020.103764.

Galindo, F. S., Rodrigues, W. L., Fernandes, G. C., Boleta, E. H. M., Jalal, A., Rosa, P. A. L., Teixeira Filho, M. C. M. (2022). Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. European Journal of Agronomy, 134, 126471. https://doi.org/https://doi.org/10.1016/j.eja.2022.126471.

Galindo, F. S., Teixeira Filho, M. C. M., Buzetti, S., Pagliari, P. H., Santini, J. M. K., Alves, C. J., Arf, O. (2019). Maize Yield Response to Nitrogen Rates and Sources Associated with Azospirillum brasilense. 111(4), 1985-1997. https://doi.org/https://doi.org/10.2134/agronj2018.07.0481.

Garcia, F., Rodrigues, M., Pennacchi, J., Mendonça, A., Gonçalves, D., Melo, N., & Barbosa, J. P. (2021). Sugarcane Resilience to Recurrent Water Deficit is Dependent on the Systemic Acclimation of Leaf Physiological Traits. Tropical Plant Biology, 14. https://doi.org/10.1007/s12042-021-09303-5.

Guo, D. J., Singh, R. K., Singh, P., Li, D. P., Sharma, A., Xing, Y. X., Li, Y. R. (2020). Complete Genome Sequence of Enterobacter roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium With Biocontrol and Stress Tolerance Properties, Isolated From Sugarcane Root. Frontiers in Microbiology, 11, 580081. https://doi.org/10.3389/fmicb.2020.580081.

Hakki, S. S., Berk, G., Dundar, N., Saglam, M., & Berk, N. (2010). Effects of root planing procedures with hand instrument or erbium, chromium:yttrium-scandium-gallium-garnet laser irradiation on the root surfaces: a comparative scanning electron microscopy study. Lasers Med Sci, 25(3), 345-353. https://doi.org/10.1007/s10103-009-0643-x.

Hartati, R., Suhesti, S., Wulandari, S., Ardana, I., & Yunita, R. (2021). In-vitro selection of sugarcane (Saccharum officinarum L.) putative mutant for drought stress. IOP Conference Series: Earth and Environmental Science, 653, 012135. https://doi.org/10.1088/1755-1315/653/1/012135.

IBGE. (2020). Produção de Cana-de-açúcar no Brasil. Brasil <https://www.ibge.gov.br/explica/producao-agropecuaria/cana-de-acucar/br>

Kodym, A., & Leeb, C. J. (2019). Back to the roots: protocol for the photoautotrophic micropropagation of medicinal Cannabis. Plant Cell, Tissue and Organ Culture (PCTOC), 138(2), 399-402. https://doi.org/10.1007/s11240-019-01635-1.

Marques, D. M., Magalhães, P. C., Marriel, I. E., Gomes Júnior, C. C., Silva, A. B. d., & Souza, T. C. d. (2021). Gas Exchange, Root Morphology and Nutrients in Maize Plants Inoculated with Azospirillum brasilense Cultivated Under Two Water Conditions. Brazilian Archives of Biology and Technology, 64.

Martins, D. S., Reis, V. M., Schultz, N., Alves, B. J. R., Urquiaga, S., Pereira, W., Boddey, R. M. (2020). Both the contribution of soil nitrogen and of biological N2 fixation to sugarcane can increase with the inoculation of diazotrophic bacteria. Plant and Soil, 454(1), 155-169. https://doi.org/10.1007/s11104-020-04621-1.

May, A., Santos, M. d. S. d., Silva, E. H. F. M. d., Viana, R. d. S., Vieira Junior, N. A., Ramos, N. P., & Melo, I. S. d. (2021). Effect of Bacillus aryabhattai on the initial establishment of pre-sprouted seedlings of sugarcane varieties. Research, Society and Development, 10(2), e11510212337. https://doi.org/10.33448/rsd-v10i2.12337.

Pagnussat, L. A., Maroniche, G., Curatti, L., & Creus, C. (2020). Auxin-dependent alleviation of oxidative stress and growth promotion of Scenedesmus obliquus C1S by Azospirillum brasilense. Algal Research, 47, 101839. https://doi.org/https://doi.org/10.1016/j.algal.2020.101839.

Pham, T.-M., Bui, X. D., Trang, L. V. K., Le, T.-M., Nguyen, M. L., Trinh, D.-M., Show, P. L. (2022). Isolation of indole-3-acetic acid-producing Azospirillum brasilense from Vietnamese wet rice: Co-immobilization of isolate and microalgae as a sustainable biorefinery. Journal of Biotechnology, 349, 12-20. https://doi.org/https://doi.org/10.1016/j.jbiotec.2022.03.007.

Raffi, M., & Charyulu, P. (2021). Azospirillum-biofertilizer for sustainable cereal crop production: Current status. In (pp. 193-209). https://doi.org/10.1016/B978-0-12-821406-0.00018-7.

Ramirez-Mata, A., Pacheco, M. R., Moreno, S. J., Xiqui-Vazquez, M. L., & Baca, B. E. (2018). Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots. Microbiological Research, 215, 155-163. https://doi.org/10.1016/j.micres.2018.07.007.

Reis, V. M., Rios, F. A., Braz, G. B. P., Constantin, J., Hirata, E. S., & Biffe, D. F. (2020). AGRONOMIC PERFORMANCE OF SUGARCANE INOCULATED WITH Nitrospirillum amazonense (BR11145). Revista Caatinga, 33.

Rosa, P. A. L., Galindo, F. S., Oliveira, C., Jalal, A., Mortinho, E. S., Fernandes, G. C., Teixeira Filho, M. C. M. (2022). Inoculation with Plant Growth-Promoting Bacteria to Reduce Phosphate Fertilization Requirement and Enhance Technological Quality and Yield of Sugarcane. Microorganisms, 10(1). https://doi.org/10.3390/microorganisms10010192.

Santos, M. P., Martínez, S. J., Yarte, M. E., Carletti, S. M., & Larraburu, E. E. (2022). Effect of Azospirillum brasilense on the in vitro germination of Eustoma grandiflorum (Raf.) Schinn.(Gentianaceae). Scientia Horticulturae, 299, 111041. https://doi.org/https://doi.org/10.1016/j.scienta.2022.111041.

Santos, M. S., Nogueira, M. A., & Hungria, M. (2021). Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Revista Brasileira De Ciencia Do Solo, 45.

Singh, P., Singh, S. N., Tiwari, A. K., Pathak, S. K., Singh, A. K., Srivastava, S., & Mohan, N. (2019). Integration of sugarcane production technologies for enhanced cane and sugar productivity targeting to increase farmers' income: strategies and prospects. 3 Biotech, 9(2), 48. https://doi.org/10.1007/s13205-019-1568-0.

Singh, R. K., Singh, P., Li, H.-B., Song, Q.-Q., Guo, D.-J., Solanki, M. K., Li, Y.-R. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. Bmc Plant Biology, 20(1), 220. https://doi.org/10.1186/s12870-020-02400-9.

Tugarova, A. V., Scheludko, A. V., Dyatlova, Y. A., Filip'echeva, Y. A., & Kamnev, A. A. (2017). FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610. Journal of Molecular Structure, 1140, 142-147. https://doi.org/https://doi.org/10.1016/j.molstruc.2016.12.063.

Urgesa, G. D., & Keyata, E. O. (2021). Effect of Harvesting Ages on Yield and Yield Components of Sugar Cane Varieties Cultivated at Finchaa Sugar Factory, Oromia, Ethiopia. International Journal of Food Science, 2021, 2702095. https://doi.org/10.1155/2021/2702095.

Downloads

Published

18/04/2023

How to Cite

SANTOS, T. S. dos .; OOTANI , M. A. .; ANDRADE , F. H. N. de .; OLIVEIRA, R. A. de O. .; GUERRA, Y. L. .; LIMA, P. G. .; ROMERO , M. A. .; MELO, J. C. de. Influence of Azospirillum brasilense on micro-propagated sugarcane seedlings. Research, Society and Development, [S. l.], v. 12, n. 4, p. e26312441354, 2023. DOI: 10.33448/rsd-v12i4.41354. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41354. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences