Identification of endophytic fungi in Hamelia patens Jacq. and evaluation of the antimicrobial potential of fungal extracts

Authors

DOI:

https://doi.org/10.33448/rsd-v12i5.41767

Keywords:

Diaporthe; Bioprospecting; Biological control.

Abstract

Objective: The objective of this study was to identify the endophytic fungal genera associated with Hamelia patens seeds and to verify the antimicrobial potential of the extracts of the selected isolates. Method: For this, the classes of compounds produced by thin layer chromatography (TLC) were suggested, and the biological activity of fungal extracts against strains of phytopathogenic fungi, yeast, gram-negative and gram-positive bacteria was evaluated. Results: 8 fungal genera associated with the seeds were identified as endophytes. The genus with the highest incidence was Diaporthe with 60%. There was inhibition of phytopathogens in all in vitro tests, except for the volatile metabolites test against Fusarium oxysporum. In the antibiogram evaluation, the isolates HP3, HP5 and HP6 stood out in the inhibition of Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pyogenes. From CCD assay (Thin Layer Chromatography) bioactive compounds such as terpenoids, phenolic compounds and coumarins were evidenced both in the mycelium and in the fermented broth of the fungal isolates. Discussion: Inhibition of the pathogens was verified in all the assays against phytopathogens, except for F. oxysporum in the volatile metabolites test. In the antibiogram, inhibition of P. aeruginosa, S. aureus and S. pyogenes bacteria was verified. Among the classes of compounds suggested by CCD in the fermented broth and mycelium are terpenoids, coumarins and phenolic compounds. Conclusion: The data obtained in this study bring unprecedented information regarding the fungal diversity associated with seeds as endophytes, being the first report of the association of endophytic fungi in H. patens seeds.

References

Abubacker, M. N., Sathya, C., & Prabakaran, R. (2013). In vitro antifungal potentials of Hamelia patens Jacq. (Rubiaceae) aqueous extracts of leaves, flowers and fruits. Biosciences Biotechnology Research Asia, 10(2), 699–704. https://doi.org/10.13005/bbra/1183

Ahmad, A., Pandurangan, A., Singh, N., & Ananad, P. (2012). A mini review on chemistry and biology of Hamelia Patens (Rubiaceae). Pharmacognosy Journal, 4(29), 1–4. https://doi.org/10.5530/pj.2012.29.1

Araújo, W. L., Marcon, J., Maccheroni, W., van Elsas, J. D., van Vuurde, J. W. L., & Azevedo, J. L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in Citrus Plants. Applied and Environmental Microbiology, 68(10), 4906–4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002

Azevedo, J. L., Maccheroni, W., Jr. Pereira, J. O., & Araújo, W. L. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotecnology, 3(1), 40-65.

Barnett, H. L., & Hunter, B. B. (1987). Illustrated genera of imperfect fungi. (4a ed.). American Phytopatological Society.

Bills, G., Dombrowsky, A., Pelaez, F., & Polishook, J. (2002). Recent and future discoveries of pharmacologically active metabolites from tropical fungi. Tropical mycology: micromycetes, 2, 165-194.

Buatong, J., Phongpaichit, S., Rukachaisirikul, V., & Sakayaroj, J. (2011). Antimicrobial activity of crude extracts from mangrove fungal endophytes. World Journal of Microbiology and Biotechnology, 27(12), 3005–3008. https://doi.org/10.1007/s11274-011-0765-8

Cafêu, M. C., Silva, G. H., Teles, H. L., Bolzani, V. D. S., Araújo, Â. R., Young, M. C. M., & Pfenning, L. H. (2005). Substâncias antifúngicas de Xylaria sp., um fungo endofítico isolado de Palicourea marcgravii (Rubiaceae). Quimica Nova, 28(6), 991–995. https://doi.org/10.1590/S0100-40422005000600011

Canuto, K. M., Rodrigues, T. H. S., Oliveira, F. S. A., & Gonçalves, F. J. T. (2012). Fungos Endofíticos: Perspectiva de Descoberta e Aplicação de Compostos Bioativos na Agricultura. Embrapa Agroindústria Tropical-Documentos, 1. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/81780/1/Fungos-Endofiticos.pdf

Chapla, V. M., Zanardi, L. M., Lopes, M. N., Bolzani, V. S., Silva, D., & Araújo, Â. R. (2010). Phomopsis sp . um prolífico produtor de metabólitos especiais. Sociedade Brasileira de Química. http://sec.sbq.org.br/cdrom/34ra/resumos/T0940-1.pdf

Chareprasert, S., Piapukiew, J., Thienhirun, S., Whalley, A. J. S., & Sihanonth, P. (2006). Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World Journal of Microbiology and Biotechnology, 22(5), 481–486. https://doi.org/10.1007/s11274-005-9060-x

Corrado, M., & Rodrigues, K. F. (2004). Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp. Journal of Basic Microbiology, 44(2), 157–160. https://doi.org/10.1002/jobm.200310341

Dai, J., Krohn, K., Florke, U., Gehle, D., Aust, H., Draeger, S., Schulz, B., & Rheinheimer, J. (2005). Novel highly substituted biaryl ethers, Phomosines D–G, isolated from the endophytic fungus Phomopsis sp. from Adenocarpus foliolosus. European Journal of Organic Chemistry, 23, 5100-5105.

Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma. Transactions of the British Mycological Society, 57(1), 25-IN3. https://doi.org/10.1016/S0007-1536(71)80077-3

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-1042.

Garzonio, D. M. (1983). Comparison of seeds and crop residues as sources of inoculum for pod and stem blight of soybeans. Plant Disease, 67(12), 1374. https://doi.org/10.1094/pd-67-1374

Guo, B., Wang, Y., Sun, X., & Tang, K. (2008). Bioactive natural products from endophytes: A review. Applied Biochemistry and Microbiology, 44(2), 136–142. https://doi.org/10.1134/S0003683808020026

Hanlin, R. T., & Menezes, M. (1996). Gêneros ilustrados de ascomicetos. Recife, PE: Imprensa da Universidade Federal Rural de Pernambuco.

Hernández, F. E., Pioli, R. N., Peruzzo, A. M., Formento, Á. N., & Pratta, G. R. (2015). Caracterización morfológica y molecular de una colección de aislamientos de Phomopsis longicolla (teleomorfo desconocido: Diaporthales) de la región templada y subtropical de Argentina. Revista de Biología Tropical, 63(3), 871. https://doi.org/10.15517/rbt.v63i3.15930

Kern, M. E. & Blevins, K. S. (1999). Métodos de análise laboratorial e isolamento de fungos. In Kern, M. E. & Blevins, K. S. (ed.), Micologia Médica: Texto e Atlas (2a. ed., pp. 29-50) São Paulo, SP: Premier.

Lazarotto, M., Muniz, M. F. B., Beltrame, R., Santos, Á. F. dos, Maciel, C. G., & Longhi, S. J. (2012). Sanidade, transmissão via semente e patogenicidade de fungos em sementes de Cedrela fissilis procedentes da região sul do Brasil. Ciência Florestal, 22(3), 493–503. https://doi.org/10.5902/198050986617

Lu, H., Zou, W. X., Meng, J. C., Hu, J., & Tan, R. X. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 151(1), 67–73. https://doi.org/10.1016/S0168-9452(99)00199-5

Marchioretto, M. S., & Schnorr, D. M. (2014). Plantas medicinais no herbário anchieta (paca). Botânica, 97.

Mariano, R. L. R. (1993). Métodos de seleção in vitro para o controle microbiológico de patógenos de plantas. Revisão Anual de Patologia de Plantas, 1, 369-409.

Mena-Rejon, G., Caamal-Fuentes, E., Cantillo-Ciau, Z., Cedillo-Rivera, R., Flores-Guido, J., & Moo-Puc, R. (2009). In vitro cytotoxic activity of nine plants used in Mayan traditional medicine. Journal of Ethnopharmacology, 121(3), 462–465. https://doi.org/10.1016/j.jep.2008.11.012

Miguel, O. G. (2003). Apostila da disciplina de fitoquímica do curso de farmácia da UFPR: Ensaio sistemático de análise em fitoquímica. Curitiba, PR: UFPR.

Mussi-Dias, V., Araújo, A. C. O., Silveira, S. F., Rocabado, J. M. A., & Araújo, K. L. (2012). Fungos endofíticos associados a plantas medicinais. Revista Brasileira de Plantas Medicinais, 14(2), 261–266. https://doi.org/10.1590/S1516-05722012000200002

Orlandelli, R. C., Alberto, R. N., Rubin Filho, C. J., & Pamphile, J. A. (2012). Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genetics and Molecular Research, 11(2), 1575–1585. https://doi.org/10.4238/2012.May.22.7

Paz, J. E. W., Contreras, C. R., Munguía, A. R., Aguilar, C. N., & Inungaray, M. L. C. (2018). Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Brazilian Journal of Microbiology, 49(3), 656–661. https://doi.org/10.1016/j.bjm.2017.03.018

Ramos, H. P., Braun, G. H., Pupo, M. T., & Said, S. (2010). Antimicrobial activity from endophytic fungi Arthrinium state of Apiospora montagnei Sacc. and Papulaspora immersa. Brazilian Archives of Biology and Technology, 53(3), 629–632. https://doi.org/10.1590/S1516-89132010000300017

Silva, G. H., Teles, H. L., Zanardi, L. M., Marx Young, M. C., Eberlin, M. N., Hadad, R., Pfenning, L. H., Costa-Neto, C. M., Castro-Gamboa, I., da Silva Bolzani, V., & Araújo, Â. R. (2006). Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry, 67(17), 1964–1969. https://doi.org/10.1016/j.phytochem.2006.06.004

Siqueira, V., Conti, R., Araújo, J., & Souza-Motta, C. (2011). Endophytic fungi from the medicinal plant Lippia sidoides Cham. And their antimicrobial activity. Symbiosis, 53, 89-95.

Souza, A. Q. L. de, Souza, A. D. L. de, Astolfi Filho, S., Pinheiro, M. L. B., Sarquis, M. I. de M., & Pereira, J. O. (2004). Atividade antimicrobiana de fungos endofíticos isolados de plantas tóxicas da amazônia: Palicourea longiflora (aubl.) rich e Strychnos cogens bentham. Acta Amazonica, 34(2), 185–195. https://doi.org/10.1590/S0044-59672004000200006

Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and Taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260(5105), 214–216.

Strobel, G. A. (2003). Endophytes as sources of bioactive products. Microbes and Infection, 5(6), 535–544. https://doi.org/10.1016/S1286-4579(03)00073-X

Tortora, G. J., Case, C. L., & Funke, B. R. (2017). Principais mecanismos de ação dos fármacos antibacterianos. In Tortora, G. J., Case, C. L., & Funke, B. R. Microbiologia (12ª. ed., pp. 551-569) Porto Alegre, RS: Artmed.

Valente, L. M. M., Alves, F. F., Bezerra, G. M., Almeida, M. B. S., Rosario, S. L., Mazzei, J. L., D'Avila, L. A., & Siani, A. C. (2006). Desenvolvimento e aplicação de metodologia por cromatografia em camada delgada para determinação do perfil de alcaloides oxindólicos pentacíclicos nas espécies sul-americanas do gênero Uncaria. Brazilian Journal of Pharmacognosy, 16, 216-223.

Wagner, H. M., Bladt, S., Zgainski, E. M. (1996). Plant drug analysis: A Thin Layer Chromatography Atlas. New York, NY: Springer-Verlag.

Walker, C., Maciel, C. G., Bovolini, M. P., Pollet, C. S., & Muniz, M. F. B. (2013). Transmissão e patogenicidade de Phomopsis sp. associadas às sementes de angico-vermelho (Parapiptadenia rigida Benth.). Floresta e Ambiente, 20(2), 216-222.

Weber, D., Sterner, O., Anke, T., Gorzalczancy, S., Martino, V., & Acevedo, C. (2004). Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. Journal of Antibiotics, 57(9), 559–563. https://doi.org/10.7164/antibiotics.57.559

Zhao, J., Zhou, L., Wang, J., Shan, T., Zhong, L., Liu, X., & Gao, X. (2010). Endophytic fungi for producing bioactive compounds originally from their host plants. January, 567–576.

Published

23/05/2023

How to Cite

AMARAL, C. R. do .; MAZAROTTO, E. J. .; GREGÓRIO, P. C.; FAVRETTO, G. . Identification of endophytic fungi in Hamelia patens Jacq. and evaluation of the antimicrobial potential of fungal extracts . Research, Society and Development, [S. l.], v. 12, n. 5, p. e23012541767, 2023. DOI: 10.33448/rsd-v12i5.41767. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41767. Acesso em: 27 apr. 2024.

Issue

Section

Agrarian and Biological Sciences