Physical and mechanical wood properties of two varieties of Pinus caribaea

Authors

DOI:

https://doi.org/10.33448/rsd-v12i9.43146

Keywords:

Pine; Wood density; Physical-mechanical resistance; Dimensional variation.

Abstract

This study aimed to characterize the properties of wood from Pinus caribaea var. hondurensis and Pinus caribaea var bahamensis, in 7-year-old individuals, in the municipality of Batatais, State of São Paulo, Brazil. For this, twelve trees of each species/variety were felled, and a 1 m long log was removed from the base of each tree. Samples were taken from the obtained logs to evaluate the physical-mechanical properties of the wood. It was verified that the woods of Pinus caribaea var. hondurensis and Pinus caribaea var. bahamensis do not differ significantly from each other for: Apparent density, basic density, compression parallel to the grain, shear parallel to grain, modulus of elasticity, volumetric shrinkage, anisotropy coefficient, radial shrinkage, and tangential shrinkage. The wood of the species/variety Pinus caribaea var. bahamensis showed a significantly higher modulus of rupture than the variety Pinus caribaea var. hondurensis. Regarding the use of wood from these species/variety, at a younger age, both showed potential use for different purposes. Since this initial assessment can be used as an indication of pre-selection of wood for the various segments of the timber industry, mainly for uses that do not have many restrictions in structural applications and dimensional variation.

References

Associação Brasileira de Normas Técnicas – ABNT. (1997). NBR 7190 Projeto de estruturas de madeira. ABNT: Rio de Janeiro.

Associação Brasileira de Normas Técnicas – ABNT. (2003). NBR 11941 Madeira: determinação da densidade básica. ABNT: Rio de Janeiro.

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-728.

American Society for Testing and Materials - ASTM. (1994). Standard methods of testing small clear specimens timber. ASTM D 143-94: Philadelphia.

Carvalho, A. (1996). Denominações convencionais para propriedades da madeira. In: Carvalho, A. Tecnologia das indústrias da madeira III – Na2. http://www.estgv.ipv.pt/paginaspessoais/jqomarcelo/tim3/tim3_tp1_na2.pdf.

Cherry, R., Karunasena, W. & Manalo, A. (2022). Mechanical Properties of Low-Stiffness Out-of-Grade Hybrid Pine—Effects of Knots, Resin and Pith. Forests, 13, 927, 2022.

Da Ros, L. M., Thomas, B. R., & Mansfield, S. D. (2021). Wood quality trait associations with climate: Room for improvement in two northern commercial tree species? Forest Ecology and Management, 497, 119492.

Gonçalez, J. C., Santos, N., Silva Junior, F. G., Souza, R. S. & De Paula, M. H. (2018). Growth ring width of Pinus caribaea var. hondurensis and its relationship with wood proprieties. Scientia Forestalis, 46, 309-317.

Glass, S. & Zelinka, S. L (2021). Moisture relations and physical properties of wood. In Wood handbook - wood as an engineering material. General Technical Report FPL-GTR-282. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, pp. 1-22.

Indústria Brasileira de Árvores - IBÁ. (2023). Relatório anual 2022. https://www.iba.org/publicacoes.

Kronka, F. J. N., Bertolani, F. & Ponce, R. H. (2005). A cultura de Pinus no Brasil. Sociedade Brasileira de Silvicultura: São Paulo.

Lima, G. M. L., Gomes, N. S. B., Cunha, T. A. & Figueiredo Filho, A. (2022). Effects of meteorological variables on Pinus caribaea growth in different ages at the Amazon region. Floresta, 52, 113-121.

Lima, I. L., Oliveira, I. R., Barbosa, J. A. & Ranzini, M. (2020). Variação em propriedades da madeira de Pinus caribaea var. hondurensis e Pinus tecunumanii. Advances in Forestry Science, 7, 1231-1247.

Loiola, P. L., Klitze, R. J., Rocha, M. P. & Vidaurre, G. B. (2021). Physical properties of wood Pinus caribaea var. caribaea, Pinus caribaea var. Hondurensis and Pinus oocarpa for pencil production. Floresta, 51, 354-362.

Lorenzi, H., Bacher, L. B. & Torres, M. A. V. (2018). Árvores e arvoretas exóticas no Brasil: madeireiras, ornamentais e aromáticas. Instituto Plantarum: Nova Odessa.

Nel, A., Malan, F., Braunstein, R., Wessels, C.B. & Kanzler, A. (2018). Sawn-timber and kraft pulp properties of Pinus elliotti x Pinus caribaea var. hondurensis and Pinus patula x Pinus tecunumanii hybrid and their parent species. South. For. J. For. Sci., 80, 159-168.

Mustefaga, E.C, Hillig, É., Tavares, E.L, Sozim, P.C.L. & Rusch, F. (2019). Caracterização físico-mecânica da madeira juvenil de Pinus. Scientia Forestalis, 47, 472-481.

Rosa, T. O., Iwakiri, S., Trianoski, R., Terezo, R. F. & Righez, J. L. B. (2023). Influence of juvenile wood proportion on density and modulus of elasticity in softwood boards for structural use: a preliminary study. Anais da Academia Brasileira de Ciências, 95, e20200809.

Rossi, M. (2017). Mapa Pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal. http://www.iflorestal.sp.gov.br.

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Embrapa: Brasília.

S.A.S. Institute Inc. (1999). SAS Procedures Guide. Version 8 (TSMO). SAS Institute Inc.: Cary.

Shimizu, J. Y. & Sebbenn, A. M. (2008). Espécies de Pinus na silvicultura brasileira. In Shimizu, J. Y. Pinus na Silvicultura Brasileira. Embrapa: Brasília.

Trianoski, R., Matos, J. L. M., Iwakiri, S. & Prata, J. G. (2013). Variação longitudinal da densidade básica da madeira de espécies de Pinus tropicais. Floresta, 43, 503-510.

Trianoski, R., Matos, J. L. M., Iwakiri, S. & Prata, J. G. (2014). Avaliação das propriedades mecânicas da madeira de espécies de Pinus tropicais. Scientia Forestalis, 42, 21-28.

Vidaurre, G. B., Lombardi, L. R., Oliveira, J. T. D. S. & Arantes, M. D. C. (2012). Lenho juvenil e adulto e as propriedades da madeira. Floresta e Ambiente, 18, 469-480.

Vivian, M. A., Modes, K. S., Fogliatto, M. M., Schlichting, R. C., Corrêa, R., Grosskopf, É. J. & Júnior, M. D. (2023). Propriedades físicas, químicas e anatômicas da madeira de Cryptomeria japonica. Pesquisa Florestal Brasileira, 43, 2-10.

Zanata, M., Pissarra, T. C. T., Ferraudo, A. S., Ranzini, M. & Campos, S. (2015). Effect of soil use on the quality of water resource in watershed using multivariate statistical analysis. Irriga, 20, 776-789.

Zanuncio, A. J. V., Possato, E. L., Carvalho, A. G., Lopes, O. P., &Castro, V. R. (2022). Basic density and scaling of juvenile and mature wood in Pinus caribaea trees. Cellulose Chem. Technol., 56, 473-479.

Zziwa, A., Mukasa, J. & Kizito, S. (2020). Structural suitability of 10-year old Pinus caribaea timber with a forest fire history in farm buildings. AgricEngInt: CIGR Journal Open, 22, 49-58.

Wen, J., Yi, M., Dong, L., Zhang, L., Liu, S., Yuan, S., Tao, X. & Lai, M. (2023). Early selection efficiency for fiber dimensions and their relationships with growth and wood quality for Pinus elliottii Engelm. in southern China. Journal of Forestry Research, 2023. https://doi.org/10.1007/s11676-023-01622-5.

Winck, R. A., Winck, L. R., Belaber, E. C., Aquino, D. R., Area, M. C. & Gauchat, M. E. (2023). Colored area, growth-ring width, and latewood percentage in hybrid pine f1 inta-pindo. Floresta, 53, 204-213.

Downloads

Published

16/09/2023

How to Cite

LIMA, I. L. de .; RANZINI, M.; FIORUCI, W. J. .; BUCCI, L. A. .; LONGUI, E. L. .; ZANATA, M.; GARCIA, J. N. . Physical and mechanical wood properties of two varieties of Pinus caribaea. Research, Society and Development, [S. l.], v. 12, n. 9, p. e7712943146, 2023. DOI: 10.33448/rsd-v12i9.43146. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43146. Acesso em: 16 may. 2024.

Issue

Section

Agrarian and Biological Sciences